
a graphical environment for network optimization

Version J–2.0β

June 26, 2003

Collette R. Coullard
David S. Dilworth
Jonathan H. Owen

i

Java
TM

and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other
countries.

Windows
r

is a registered trademark of Microsoft
r
, Inc.

Solaris
r

is a registered trademark of Sun Microsystems, Inc.

Netscape
r

is a registered trademark of Netscape Communications Corporation.

Copyright c© 1993–2003 by Jonathan H. Owen, Collette R. Coullard, and David S. Dilworth.
All Rights Reserved.

ii

About the Authors

Collette R. Coullard is an Associate Professor and a Charles Deering McCormick Professor of
Teaching Excellence at Northwestern University. Her research focuses on modeling, solution
techniques, and the fundamental mathematics of combinatorial optimization. She obtained
her Ph.D. in 1985 from Northwestern University; she has taught at Purdue University and
the University of Waterloo, and she was a Humboldt Fellow at the University of Bonn.

David S. Dilworth is the principal of Systems Research, a small business that develops ad-
vanced computing systems for industry and academia. His research area is electronic hologra-
phy for imaging through scattering media, and he holds a patent for that work. He obtained
his Ph.D. in 1989 from the University of Michigan where he is currently an Adjunct Associate
Professor in Electrical Engineering and Computer Science.

Jonathan H. Owen is a research engineer in the Enterprise Systems Lab at General Motors.
In 1998 he received his Ph.D. from the Industrial Engineering and Management Sciences De-
partment at Northwestern University, where he maintains a part-time position as an assistant
research professor. His primary research focuses on solving mixed-integer linear programs
with general-integer variables. Additional research has dealt with solving specialized binary
integer programs using branch-and-cut methodology and the development of GIDEN as a
teaching and research tool for network optimization.

Resources

The latest information on the GIDEN environment is available through the web site, which
is located at the following url:

http://giden.nwu.edu/

GIDEN is under ongoing development. If you have feedback on the environment or any of the
associated documentation, please contact us via email at giden@iems.nwu.edu or through
the web site.

Acknowledgments

The developers gratefully acknowledge essential support for the GIDEN project from the
following organizations:

Office of Naval Research http://www.onr.navy.mil/
Sun Microsystems, Inc. http://www.sun.com/
National Science Foundation http://www.nsf.gov/
Optimization Technology Center http://www.mcs.anl.gov/otc/
Committee on Institutional Cooperation http://NTX2.cso.uiuc.edu/cic/
Zero G Software, Inc http://www.zerog.com/

The authors would also like to express their appreciation to those individuals who have pro-
vided comments and suggestions that have resulted in the improvement of GIDEN, includ-
ing undergraduate and graduate students at Northwestern University who have taken IEMS
courses C-13, D-50, and D-52. We are particularly grateful to the following individuals: Robert
Fourer, Peh Ng, Susan Owen, and Donald Wagner.

Special thanks are offered to Susan Owen for her many contributions to the GIDEN project.

Contents

Introduction 1

1 Preliminaries: Network Optimization and GIDEN 3

1.1 Notation and Definitions . 3

1.2 An Example of Network Optimization . 9

1.2.1 Constructing a Network Model . 9

1.2.2 Formulating a Network Optimization Problem 11

1.2.3 Solving a Network Optimization Problem . 11

1.2.4 A Solution for a Network Optimization Problem 16

1.3 The GIDEN Environment . 18

1.3.1 Core-GIDEN . 18

1.3.2 Solver Toolkit . 19

1.3.3 Network Data Structures . 20

2 Using the GIDEN Environment 21

2.1 The GIDEN User Interface . 21

2.2 Building and Editing Networks . 23

2.2.1 Drawing Networks . 23

2.2.2 Managing Node and Edge Information . 25

2.3 Running Solvers . 28

2.3.1 Selecting a Solver . 28

2.3.2 Specifying Inputs . 28

2.3.3 Controlling Execution . 29

2.3.4 Interpreting Results . 31

iv CONTENTS

3 Solver Reference 33

3.1 Minimum Spanning Tree Problem . 35

3.1.1 Kruskal’s Algorithm . 36

3.1.2 Prim’s Algorithm . 37

3.2 Shortest Path Problem . 39

3.2.1 Dijkstra’s Algorithm . 40

3.2.2 FIFO Label Correcting Algorithm . 42

3.3 Maximum Flow Problem . 44

3.3.1 Generic Augmenting Path Algorithm . 45

3.3.2 Shortest Augmenting Path Algorithm . 46

3.3.3 Preflow-Push Algorithm . 48

3.4 Minimum Cost Flow Problem . 50

3.4.1 Capacity Scaling . 51

3.4.2 Cycle Canceling . 53

3.4.3 Out-of-Kilter . 54

3.4.4 Network Simplex Algorithm . 56

3.4.5 Successive Shortest Paths Algorithm . 58

4 Developing Solvers 61

4.1 GIDEN Solver Basics . 61

4.1.1 The Implementor Distribution . 61

4.1.2 Anatomy of a Solver . 61

4.1.3 The Obligatory HelloWorld Example . 64

4.1.4 Linking a Solver to GIDEN . 65

4.2 An Example Solver . 65

4.2.1 Kruskal’s Algorithm . 66

4.2.2 Creating the Solver File and Linking to GIDEN 66

4.2.3 Adding the Algorithm Logic . 67

4.2.4 Setting the Network Labels . 70

4.2.5 Adding Animation . 71

4.2.6 Adding Pseudocode . 74

4.2.7 Using the Status Line . 76

CONTENTS v

4.3 Advanced Topics . 78

4.3.1 Visually Displaying Results . 78

4.3.2 Using a Solver Input Dialog . 81

4.3.3 Executing Solvers as Subroutines . 84

4.3.4 Modifying Networks within Solvers . 84

Bibliography 85

Introduction

Let G = (N,A) be a graph with node set N and edge set A. Given information I about the nodes and
edges of G, we call N = (G, I) a network. Networks are useful mathematical modeling constructs for
representing a variety of physical and abstract systems. Given some system that can be modeled as
a network N , we may ask questions about what properties characterize the system. These questions
can be translated into problems that we can solve using the network model N . Network optimization
deals with constructing a network to model an underlying system, describing in terms of the network
model the properties of interest, solving the network problem using exact or heuristic techniques,
and using the model solution to develop a better understanding of the real-world system. Examples
of network optimization problems include shortest path problems, minimum spanning tree problems,
flow problems, and matching problems. Two recent textbooks on network optimization are [1] and
[3].

GIDEN is a visually oriented interactive software environment for network optimization. There are
many accounts of situations where visual representations have been used effectively to communicate
ideas when verbal and textual representations alone have been less successful. For network opti-
mization, the use of visualization is natural because of the convenient graphical representation of
nodes as points and edges as lines between pairs of nodes. (For a nice reference on visualization
and optimization, see [5].) The fundamental purpose of GIDEN is to facilitate the visualization of
network optimization problems, solutions, and solution algorithms. Features of GIDEN include the
following:

• a graphical interface for building and modifying networks

• facilities for algorithm animation

• an expandable toolkit of animated solution algorithm implementations (“solvers”)

• an extensive library of network-related data structures

• platform independence

The features listed above make GIDEN an attractive tool for a variety of users. The most obvious
users in the context of viewing algorithms are in the academic community. Teachers of network opti-
mization can use the graphical animation tool in the classroom to demonstrate network algorithms.
Algorithms are learned through various methods, depending on needs and learning styles. Typically
at some stage in the learning process the steps of the algorithm are performed on an example. An
effective example illustrates the steps of the procedure, including termination, and also provides
some convincing evidence of the correctness of the final solution. A graphical animation tool en-
ables users to make this stage of the learning process as extensive as they want. They can try the
algorithm on a number of examples or on a specific example a number of times. They can test their
knowledge of the algorithm by predicting its behavior. Students learning network optimization can
use the tool outside of class to solidify their knowledge, both through independent endeavors and

2 Introduction

through specific homework assignments. GIDEN has been well-received when used as a teaching
and learning aid in graduate and undergraduate classes at Northwestern University.

GIDEN is also a useful implementation environment for network optimization algorithms. Users can
quickly implement network optimization algorithms using the network data structures class library,
which provides abstract data types and containers that are appropriate for network programming
(e.g., Node, Edge, Network, List, PriorityQueue). Algorithm animation assists in implemen-
tation debugging as well as identification of bottlenecks. A pseudocode window may optionally be
created with each algorithm to assist in tracing algorithm execution.

Chapter 1

Preliminaries: Network

Optimization and GIDEN

1.1 Notation and Definitions

In this section, we define notation and elementary network concepts that will be used throughout
this manual. For a thorough introduction to networks, see [1], [2], [3], and [6].

graph: A graph G = (N,A) consists of a set N of nodes (or vertices) and a set A of edges (or arcs).

directed and undirected edges: An edge e = (i, j) is a pairing of nodes i and j; we call node i
and node j the ends of edge e. An edge e is directed if it is an ordered pairing of nodes, i.e.,
e = (i, j) 6= (j, i); if an edge e = (i, j) is a directed edge, we call i the tail node (or tail) of
edge e, and we call j the head node (or head) of edge e. If an edge e is an unordered pairing
of nodes, i.e., e = (i, j) = (j, i), then we call the edge undirected. A directed edge is also called
an arc.

directed and undirected graphs: Graph G is a directed graph (or digraph) if edges e ∈ A are
directed. G is an undirected graph if edges e ∈ A are undirected. For the sake of simplicity,
we assume that edges in a graph are either all directed or all undirected. The illustration below,
shows a graphG with node setN = {1, 2, 3, 4} and edge setA = {(2, 1), (2, 3), (3, 1), (3, 4), (4, 2)}.

1 2

3 4

1 2

3 4

Directed graph G = (N,A). Undirected graph G = (N,A).

subgraph: A graph Ḡ = (N̄ , Ā) is a subgraph of G = (N,A) if N̄ ⊆ N and Ā ⊆ A. In the
illustration below we show a directed graph G = (N,A) (left) and a subgraph Ḡ = (N̄ , Ā),
where N̄ = {1, 2, 3} and Ā = {(2, 1), (2, 3), (3, 1)} (right).

4 Preliminaries: Network Optimization and GIDEN

1 2

3

1 2

3 4

Given E ⊆ A, the subgraph induced by E is denoted G(E) = (N(E), E), where N(E) is the
set of end nodes of members of E. Where no confusion arises, we sometimes use E to refer to
this subgraph G(E).

network: Given some information I about the nodes and/or edges of a graph G, we call N = (G, I)
a network. If the edge set of G is directed, we call N a directed network ; otherwise, the edge
set of G is undirected and we call N an undirected network. The following illustration shows
a network N = (G, u) where G is the directed graph from above and u = {ue ∈ Z : e ∈ A} is
some information on the edges A.

1 2

3 4= 3

(2,3)
(4,2)

(3,4)

(3,1)
= 2

= 7 = 4u

u

u

(2,1)
= 3u

u

walk: A walk W of G is a sequence of nodes and edges

W = {i1, e1, i2, e2, i3, . . . , ir−1, er−1, ir}

such that ek = (ik, ik+1) or ek = (ik+1, ik) for all k ∈ {1, 2, . . . , r−1}. The term walk may also
be used to refer to a sequence of either nodes or edges (e.g., the walk W can be also be written
as {i1, i2, . . . , ir} or {e1, e2, . . . , er−1}). If G is directed, then W is called a directed walk if the
edge (ik, ik+1) ∈ A for any two consecutive nodes in the walk, ik and ik+1. Pictured below are
two walks: walk W1 = {2, 3, 1, 2, 4} (left) and directed walk W2 = {2, 3, 4, 2, 1} (right).

1 2

3 4

1 2

3 4

path: A path P is a walk with no repeated nodes. A directed path (or dipath) P is a directed walk
with no repeated nodes. We call a path P an s-t path (s-t dipath) if it begins at node s and
ends at node t. The following illustration shows three paths; only the bottom path, P3, is a
directed path.

1 4

1 4

1 4

= {1,2,3,4}P

= {1,2,3,4}P

= {1,2,3,4}P
1

2

3

2

2

2

3

3

3

1.1 Notation and Definitions 5

cycle: A cycle (or circuit) C is a path {i1, e1, i2, e2, . . . , ir−1, er−1, ir} along with the edge (i1, ir)
or the edge (ir, i1). A directed cycle (or directed circuit) is a directed path followed by the
directed edge (ir, i1). The illustration below shows three cycles; only the bottom cycle, C3 is
a directed cycle.

1

2

3 4

1 4

1 4

1=

=

=C

C

C

{1,2,3,4,1}

{1,2,3,4,1}

{1,2,3,4,1}

2

2

2

3

3

3

acyclic: We say a graph is acyclic if it does not contain a cycle. Similarly, a network is called
acyclic if its associated graph is acyclic.

multiedge: Duplicate edges in A are called multiedges (or parallel edges). The following illustration
shows a multiedge between node 1 and node 3.

1 3

loop: An edge whose endpoints are the same node (i.e., e = (i, i) for some i ∈ N) is called a loop.
The following illustration shows a loop on node 3.

3

connectedness: In a graph G = (N,A), two nodes i ∈ N and j ∈ N are called connected if there
exists at least one i-j path in G. A connected graph is a graph G = (N,A) where every pair of
nodes in N is connected. The maximal connected subgraphs of G are called the components
of G. If there exists a pair of nodes i, j ∈ N such that there is no path between node i and
node j, then we call G a disconnected graph. We say that a digraph G is strongly connected if
for each pair of nodes, i, j ∈ N , there exists both an i-j dipath and a j-i dipath in G. In the
following illustration, we show a connected graph (left), a disconnected graph (middle), and a
strongly connected graph (right).

1 2

3 4

1 2

3 4

1 2

3 4

tree: A tree is an acyclic connected graph. A spanning tree of graph G is a tree T that is a subgraph
of G containing all nodes of G. In the following illustration, we show a graph G (left), a tree
that is a subgraph of G (middle), and a tree that is a spanning tree of G (right).

6 Preliminaries: Network Optimization and GIDEN

1 2

3

1 2

3 4

1 2

3 4

forest: A forest is an acyclic graph; it follows that each connected component of a forest is a
tree. The following illustration shows a forest with three components, F = {T1, T2, T3}, where
T1 = {(1, 2), (2, 3), (2, 6)}, T2 = {(4, 11), (7, 11)}, and T3 = {(5, 9), (8, 9), (9, 10)}.

1

2
3

4

5
6

7

8
9

10

11

cut: Given a partition of the node set N into two subsets N1 and N2 = N\N1, the collection of
edges (i, j) such that i ∈ N1 and j ∈ N2 is called a cut (or cutset), denoted δ(N1, N2). For
two specified nodes, s, t ∈ N , an s-t cut is any cut δ(N1, N2) with the added property that
s ∈ N1 and t ∈ N2. In the following illustration, shaded nodes belong to N1 and non-shaded
nodes belong to N2; the edges drawn as solid arrows are in the cut δ(N1, N2).

2
3

4

5
6

7

8
9

10

11

1

N1 = {2, 3, 4, 6, 7}, N2 = {1, 5, 8, 9, 10, 11},
δ(N1, N2) = {(1, 2), (4, 11), (5, 6), (6, 9), (6, 10), (7, 11), (10, 7)}

adjacency: We say that node i and node j are adjacent nodes if edge (i, j) ∈ A or edge (j, i) ∈ A.
For a node i ∈ N , we say that any edge (i, j) ∈ A or (j, i) ∈ A is an incident edge of node i.
The collection of edges that are incident to a node i ∈ N is called the adjacency list of node
i; we denote the adjacency list of node i as A(i). The following illustration shows a graph and
gives the adjacency list for each node.

1.1 Notation and Definitions 7

1 2

3 4

A(1) = {(2, 1), (3, 1)}, A(2) = {(2, 1), (2, 3), (4, 2)}
A(3) = {(2, 3), (3, 1), (3, 4)}, A(4) = {(3, 4), (4, 2)}

matching: A matching of a graph G is a subset M ⊆ A such that each node of G has at most one
incident edge in M . An example of a matching is shown as the bold edges in the following
illustration; in this example, the matching is given as M = {(1, 5), (2, 3), (4, 6), (8, 9), (10, 11)}.

5
6

7

8
9

10

11

1

4
3

2

Definition: Given a finite set E and a field F, FE denotes the |E|-dimensional vector space with
components indexed on the members of E. For example, u ∈ ZA means {ue ∈ Z : e ∈ A}.

capacitated network: A capacitated directed network is a directed network N = (G, u) where
information u ∈ ZA consists of integer-valued edge capacities for each edge e ∈ A.

1 2

3 4= 3

(2,3)
(4,2)

(3,4)

(3,1)
= 2

= 7 = 4u

u

u

(2,1)
= 3u

u

flow: Given a capacitated directed network N = (G, u), a flow is a vector x ∈ RA that satisfies
flow convervation at each of the nodes of the network, that is

∑

(i,j)∈E x(i,j) =
∑

(j,i)∈E x(j,i)

for each node j ∈ N . A feasible flow also satisfies the capacity (and lower bound) restrictions
on the edges, that is 0 ≤ xe ≤ ue for each edge e ∈ A.

residual network: Given a capacitated directed network N = (G, u) and a flow x ∈ RA, the
associated residual network is the network N x = (Gx, ux). The graph Gx = (N,Ax) has node
set N and edge set Ax, where for each edge (i, j) ∈ A, the edge e = (i, j) is in Ax if xe < ue

and the edge e = (j, i) is in Ax if xe > 0. The capacities of the residual network, ux, are
defined as follows:

ux
(i,j) =

{

u(i,j) − x(i,j) for (i, j) ∈ A

x(j,i) for (j, i) ∈ A

The illustration below shows a network N (left) and the associated residual network N x (right)
for flow x = {x(2,1), x(2,3), x(3,1), x(3,4), x(4,2)} = {0, 3, 0, 3, 3}. Edge capacities for each network
(u or ux) are given as numeric labels on the edges.

8 Preliminaries: Network Optimization and GIDEN

3

3

7

1 2

3 4

42

1 2

3 4

3

4

3

2 3 1

3

1.2 An Example of Network Optimization 9

1.2 An Example of Network Optimization

In this section we demonstrate network optimization by describing how it can be used to analyze a
system of interconnected one-way streets: We first build a network model of our system. We then
pose a question about the system and formulate a corresponding network optimization problem.
We then demonstrate a process for solving the problem, using a network optimization algorithm.
Finally, we show the solution of the problem on our network and translate the solution into an
answer to our original question regarding the underlying system.

1.2.1 Constructing a Network Model

As mentioned in the introduction, networks are often used to represent a physical or logical system.
As an example, let’s consider a system of interconnected one-way streets. In order to represent this
system as a graph, let each intersection of two or more streets be represented by a node i ∈ N . Given
a pair of intersections i, j ∈ N , if you can travel along a street from i to j without encountering
any other intersection, let the street segment between i and j be represented as a directed edge
e = (i, j) ∈ A. The system of roads is then represented by the directed graph G = (N,A).

It is natural to consider visual representations of systems that can be modeled using graphs and
networks, with nodes depicted as points and edges as lines between pairs of nodes. Suppose that
part (a) of Figure 1.1 shows our example system of streets. In this system we have eight streets

Maple St.

Elm St.

Oak St.

Pine St.

W
as

hi
ng

to
n

A
ve

.

Je
ff

er
so

n
A

ve
.

D
av

is
 A

ve
.

Ike Blvd.

(a) A system of interconnected one-way streets.

1 2 3

4 5
6

7 8 9

10 11 12

(b) Representation of street system as a directed
graph.

Figure 1.1: System of streets and corresponding network model.

and twelve intersections. We can represent this system as a directed graph with twelve nodes —
each representing an intersection — and seventeen edges that collectively represent the eight streets.
In particular, we can represent the system pictured in Figure 1.1a as a directed graph G = (N,A)
where

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
and

A = {(1, 4), (2, 1), (2, 6), (3, 2), (4, 5), (4, 7), (5, 2), (6, 3), (7, 10),
(8, 5), (8, 7), (9, 6), (9, 8), (10, 11), (11, 8), (11, 12), (12, 9)}.

10 Preliminaries: Network Optimization and GIDEN

Part (b) of Figure 1.1 shows a representation of this directed graph.

Suppose we also have values l associated with each arc in A that represent the length of each street
segment. In this case, the system of roads and associated street lengths are represented by the
(directed) network N = (G, l). For the example system illustrated in Figure 1.1a, lengths of the
street segments are given in Table 1.1. In the table, street segments are represented as an ordered

Table 1.1: Lengths for street segments between adjacent intersections.

“Tail” Intersection “Head” Intersection Length

Maple/Washington Elm/Washington 30 units
Maple/Jefferson/Ike Maple/Washington 50 units
Maple/Jefferson/Ike Davis/Ike 47 units
Maple/Davis Maple/Jefferson/Ike 40 units
Elm/Washington Elm/Jefferson 50 units
Elm/Washington Oak/Washington 20 units
Elm/Jefferson Maple/Jefferson/Ike 30 units
Davis/Ike Maple/Davis 25 units
Oak/Washington Pine/Washington 15 units
Oak/Jefferson Elm/Jefferson 20 units
Oak/Jefferson Oak/Washington 50 units
Oak/Davis Davis/Ike 25 units
Oak/Davis Oak/Jefferson 40 units
Pine/Washington Pine/Jefferson 40 units
Pine/Jefferson Oak/Jefferson 18 units
Pine/Jefferson Pine/Davis 50 units
Pine/Davis Oak/Davis 15 units

pair of intersections such that we can drive from the tail intersection to the head intersection while
obeying the one-way restrictions. The lengths listed give the distances between the tail and head
intersections along the corresponding street segments. Figure 1.2 shows a network that represents
our resulting system (complete with lengths le for each e ∈ A).

1 2 3

4 5
6

7 8 9

10 11 12

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

Figure 1.2: A network representing the system; street lengths are associated with each street segment.

1.2 An Example of Network Optimization 11

1.2.2 Formulating a Network Optimization Problem

Given such a system of interconnected streets, we may be interested in answering questions such as

“What is the shortest driving distance between intersection-X and intersection-Y?”

This question translates into a problem that we can solve using our network.1 Using the earlier
definition of a directed path, we can translate the above question in terms of the network N = (G, l),
where intersection-X and intersection-Y correspond to nodes x ∈ N and y ∈ N as follows:

“Find a shortest x-y dipath P in G.”

This problem statement leads to the following network optimization problem formulation, where the
length of a dipath P is equal to the sum of the edge lengths le for all edges e ∈ P :

min
∑

e∈P le
such that P is an x-y dipath in G

We now describe how network optimization can be used to solve this problem formulation, returning
a solution or some proof that no solution exists.

1.2.3 Solving a Network Optimization Problem

Methods for solving network optimization problems are known as network algorithms. Graph and
network-based algorithms consist of a set of instructions. Execution of such an algorithm is the pro-
cess of following these instructions by performing a series of operations on a network instance. Thus,
algorithm executions result in a finite sequence of operations on the nodes, edges, and associated
information that yields a solution or some proof that no solution exists. The algorithm execution
process is illustrated in Figure 1.3.

Return now to our problem formulation for finding the shortest driving distance between two inter-
sections. Consider the situation where this problem formulation does not have a solution (i.e., there
is no x-y dipath P in network N). In this case, we say that our problem is infeasible. Recall our
underlying question:

What is the shortest driving distance between intersection-X and intersection-Y?

If our problem formulation is infeasible, the appropriate answer would be

You cannot drive from intersection-X to intersection-Y via the given system of
streets, and thus the shortest driving distance between those two intersections is undefined
(infinite).

When an x-y dipath P does exist (i.e., the problem is feasible), the solution to our problem is a
shortest dipath with respect to the street segment lengths l. For the example system illustrated in
Figure 1.1, our readers should be able to convince themselves through observation that at least one
dipath exists between each pair of intersections.

Let’s consider a particular instance where we are trying to find the shortest driving distance from
our house at the corner of Maple/Washington to the movie theater at Davis/Ike. One approach
would be to enumerate all dipaths between the two intersections, calculate the length of each dipath,
and choose a dipath with minimal total length. While this approach seems straightforward for our
example system, for larger systems it becomes impractical to find all dipaths. Fortunately for us,
there are network optimization algorithms that will solve our problem more efficiently, even for large
networks. One such algorithm that we can apply is known as Dijkstra’s Algorithm.

1In fact, what we have described is known as the shortest-path problem. See § 3.2 for more information on this
problem.

12 Preliminaries: Network Optimization and GIDEN

?
q

i

?

-

?

Algorithm

Network N = (G, I)

Â
Á

¿
À

algorithm data

º
¹

·
¸

Z
Z
ZZ
½

½
½½Z

Z
ZZ
½
½
½½

feasible?

Â
Á

¿
À

Proof of
Infeasibility

Â
Á

¿
À

Solution,
Proof of Optimality

Figure 1.3: Solution process representation.

Dijkstra’s Algorithm

Consider a directed network N = (G, l), where le is a non-negative length for each edge e ∈ A.
Given such a network and some node s ∈ N , Dijkstra’s algorithm finds the shortest dipaths from
node s to all other nodes in N .2 To do so, Dijkstra’s algorithm maintains a partition of the node set
N into three subsets: a set of permanently labeled nodes to which a shortest dipath is known from
s, a set of labeled nodes to which some dipath is known from s — though it may not be the shortest
such dipath available, and a set of unlabeled nodes to which no dipath from s is known. Figure 1.4
presents a description of Dijkstra’s algorithm where these three sets are referred to as P , L, and U

for permanently labeled, labeled, and unlabeled nodes respectively.

Although we do not offer a proof here, it can be shown that

1. Dijkstra’s algorithm terminates finitely when given a finite network N as input.

2. At completion of Dijkstra’s algorithm, all nodes belong to set P or set U .

3. For each node i ∈ U at completion of Dijkstra’s algorithm, there is no dipath P in N from s

to i.

4. For each node i ∈ P , the shortest dipath from node s to node i has total length di.

Application of Dijkstra’s Algorithm to Our Example

Let’s now apply Dijkstra’s algorithm to our example network from Figure 1.2 to find the shortest
dipath from our house (node 1) to the theater (node 6). We will demonstrate the application of
Dijkstra’s algorithm through a series of illustrations.

2If dipaths do not exist from s to some nodes in N , the final “distance” of the shortest dipaths to those nodes will
be reported as infinite.

1.2 An Example of Network Optimization 13

algorithm Dijkstra;
{

// initialize algorithm information
di :=∞ and pred(i) := null for all i ∈ N ;
P := ∅, L := ∅, U := N ;

// setup for starting at the given node s
ds := 0;
move node s from set U to set L;

while (the set L is non-empty) do
{

select node i ∈ L such that di ≤ dj for all j ∈ L;
move node i from set L to set P ;

for (all nodes j with (i, j) ∈ E) do
{

if (dj > di + l(i,j)) then
{

dj := di + l(i,j);
pred(j) := i;
if (j ∈ U) then move j from set U to set L;

}
}

}
}

Figure 1.4: Description of Dijkstra’s algorithm.

In the illustrations that follow, each node i ∈ N is drawn with an associated distance label di that
represents the length of the shortest dipath currently known from s to i; for unlabeled nodes this
distance label is “∞.” Nodes are drawn as either solid or bold circles. Nodes drawn as solid circles
may belong to either L or U , depending on whether the distance label is ∞. Bold circles represent
nodes that belong to P , i.e., those that have been permanently labeled; the distance labels for such
nodes i ∈ P gives the length of the shortest dipath from s to i.

Each edge is drawn either as a dotted arrow, a solid arrow, or a bold arrow. An edge that is drawn
as a dotted arrow is not currently used in any dipath from node s. An edge e = (i, j) that is drawn
as a solid arrow is in the best dipath currently known from node s to node j ∈ L. An edge e = (i, j)
that is drawn as a bold arrow belongs to the best dipath from node s to node j ∈ P .

In the illustration for Step 0 we see the state of the network after algorithm information has been
initialized and node s has been labeled. Step 1 – Step 12 show the state of the network after
each pass through the while loop in Dijkstra’s algorithm as described in Figure 1.4.

14 Preliminaries: Network Optimization and GIDEN

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

=
=
=

{1}
{2,3,4,5,6,7,8,9,10,11,12}

P
L
U

0

Step 0. =
=
=

{1}
{4}
{2,3,5,6,7,8,9,10,11,12}

P
L
U

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

0

30

Step 1.PSfrag replacements

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∅

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

=
=
=

{1,4}
{5,7}
{2,3,6,8,9,10,11,12}

P
L
U

80

45

30

0

Step 2.

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

=
=
=

{1,4,7}
{5,10}
{2,3,6,8,9,11,12}U

P
L

80

50

45

30

0

Step 3.PSfrag replacements

∞

∞

∞ ∞

∞

∞

∞

∞

∞

∞

∞ ∞

∞

∞

∞

∅

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

=
=
=

{1,4,7,10}
{5,11}
{2,3,6,8,9,12}

P

U
L

80

6050

45

30

0

Step 4.

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

=
=
=

{1,4,7,10,11}
{5,8,12}
{2,3,6,9}

P
L
U

0

30

45

50 60

68

80

110

Step 5.PSfrag replacements

∞

∞

∞∞

∞

∞ ∞

∞

∞

∞

∅

1.2 An Example of Network Optimization 15

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

110

68

60

78

108

50

45

30

0

=
=
= {2,3,6,9}

{1,4,7,8,10,11}
{5,12}

P
L
U

=
=
=

{1,4,5,7,8,10,11}
{2,12}
{3,6,9}U

L
P

110

78

68

6050

45

30

0

Step 6. Step 7.PSfrag replacements

∞ ∞

∞

∞

∞

∞

∞

∅

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

50

45

30

0 108

78

68

60 110

155

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

0

30

45

50

108

78

68

60

155

125

110

=
=
=

{1,2,4,5,7,8,10,11,12}
{6,9}
{3}

P
L
U

=
=
=

{1,2,4,5,7,8,10,11}
{6,12}
{3,9}

P
L
U

Step 8. Step 9.PSfrag replacements

∞∞

∞

∅

=
=
= {3}

{1,2,4,5,7,8,9,10,11,12}
{6}

P
L
U

=
=
=

{1,2,4,5,6,7,8,9,10,11,12}
{3}

P
L
U

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

110

125

140

165108

78

68

6050

45

30

0

Step 10. Step 11.

140

125

110

68

60

78

1080

30

45

50

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

PSfrag replacements

∞

∅

16 Preliminaries: Network Optimization and GIDEN

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

30

45

0

50

68

110

78

108

125

140

165

60

Step 12. =
=
=

{1,2,3,4,5,6,7,8,9,10,11,12}P
L
U

PSfrag replacements

∞ ∅
∅

Notice that we permanently labeled node 6 in Step 11. For the purposes of our example, we would
have liked to have terminated execution after this step since we are only interested in finding the
shortest dipath from node s to node 6. We can specialize Dijkstra’s algorithm to terminate early
when it finds the shortest dipath from the start node s to a specified destination node t by changing
the stopping criteria from

while the set L is non-empty do

to the stopping criteria

while t 6∈ P and the set L is non-empty do

With this change Dijkstra’s algorithm terminates execution if we permanently label the destination
node t, even when L is non-empty. (Observe that by modifying the algorithm in this manner, we
no longer maintain properties (2) and (3) given earlier for Dijkstra’s algorithm.)

1.2.4 A Solution for a Network Optimization Problem

Throughout this section we have worked towards answering the question

What is the shortest driving distance between our house and the theater?

We have modeled the streets in our neighborhood as a network N = (G, l), posed the question
as a network optimization problem on N , and applied Dijkstra’s algorithm to solve the network
optimization problem. All that is left now is to interpret the solution as an answer to our question.

The solution that is given by Dijkstra’s algorithm for our problem is illustrated in Figure 1.5b. For
any node i ∈ N , the shortest dipath from s to i in our network is given by the set of edges that
connect node s to node i. In particular, the shortest dipath from node 1 (representing our house)
to node 6 (representing the movie theater) is the dipath

P1,6 = {(1, 4), (4, 7), (7, 10), (10, 11), (11, 12), (12, 9), (9, 6)}.

The total length of the dipath from node s to node i for i ∈ N is given by the distance label di

represented in the nodes of Figure 1.5b. For our example problem, the total length of the dipath
P1,6 between node 1 and node 6 is 140 units. Thus, we have an answer to our question:

The shortest driving distance from our house to the theater is 140 units: Drive three
blocks down Washington Ave. until you reach the intersection of Washington Ave. and
Pine St. Turn left onto Pine and drive two blocks until you reach Davis Ave. Turn left
onto Davis and drive two blocks to the intersection of Davis and Ike Blvd.

1.2 An Example of Network Optimization 17

30 30 2547

15

50

50

40

40

50

15

5
10

8

20

10 15

9

1 2 3

4 5
6

7 8

10 11 12

(a) Our network model N = (G, l).

30

45

0

50

68

110

78

108

125

140

165

60

30 30 25

15
50

15

5
10

8

10 15

(b) The solution to our example problem.

Figure 1.5: Final network and problem solution.

18 Preliminaries: Network Optimization and GIDEN

1.3 The GIDEN Environment

GIDEN is a visually-oriented interactive software environment for network optimization whose funda-
mental purpose is to facilitate the visualization of network optimization problems, solutions, and al-
gorithms. The GIDEN system has three primary components: The first component, “core-GIDEN,”
controls the graphical user interface and provides the framework for communication between solvers
and graphical input/output devices. The second component is a toolkit of animated solvers. The
third component is a collection of data structures that are tailored to the needs of a network opti-
mization environment; both core-GIDEN and the solvers use these data structures extensively.

The current release of GIDEN is implemented in Java, an object-oriented programming language
with built-in platform-independent graphics routines (see http://java.sun.com). In its current
form GIDEN can be run as a stand-alone application on on any Java-enabled computing platform
(i.e., any machine with an available Java interpreter).3

1.3.1 Core-GIDEN

At the heart of the GIDEN environment is a framework that provides the interface between graphi-
cal input/output devices and algorithm implementations — we call this framework “core-GIDEN”.
The idea behind core-GIDEN is to provide communication channels between users and solvers that
are convenient for each. For users this translates into a graphical interface that is intuitive, flexi-
ble, and easy-to-use. For solvers, core-GIDEN provides convenient mechanisms for retrieving and
reporting information through the graphical devices. After describing the core-GIDEN mechanism
for animation, we will discuss the core-GIDEN user and solver interfaces.

Animation Sets

Solvers in GIDEN provide animation through the use of animation sets. Animation sets are based
on the idea that the progress of a solver, given the current state of the network, can be represented
by classifying nodes and edges into mutually exclusive sets. By representing each set with a distinct
color, users can follow the progress of the solver by observing changes in the colors of nodes and
edges. (See Chapter 3 for information on the animation sets that are used in specific solvers.)

Core Environment User Interface

Users communicate with the GIDEN environment through the graphical interface, using a mouse
to select actions and the keyboard to input textual information. The graphical interface is designed
to be similar to that of popular applications for the Macintosh and Windows operating systems,
making the basic functionality of GIDEN easy to access and use.

GIDEN users can create and modify networks using the mouse and keyboard. Once a network is
built (or opened), the user selects a solver from the solver toolkit to apply to the network. At
that time, the network is analyzed and the user is prompted for any undefined information needed
by the solver. The user then executes the solver, controlling the level of animation detail and the
animation speed. Pseudo-code of the solution algorithm may be provided in a separate window with
a graphical tracer that shows the progress of the executing algorithm.

The reader is referred to Chapter 2 for more complete information on the GIDEN user interface.

3GIDEN is being developed under Windows9x/NT, Linux, and Solaris operating systems.

1.3 The GIDEN Environment 19

Core Environment Solver Interface

Core-giden is an object-oriented environment (see [7] for a general description of object-oriented
programming). Solvers are implemented as derived classes of a generic solver base class named
ExecBase that is included in core-GIDEN. The constructor for the derived solver class is passed a
UserBase object that provides several methods for communicating with the user interface; stable
functions defined in the UserBase object are used by the solver class to report important changes
(e.g., when items have moved between animation sets). Virtual methods in ExecBase provide for
communication from core-GIDEN to the solver.4 In particular, through calls to these methods, core-
GIDEN instructs the solver when to prepare for execution, when to execute, and when to terminate
execution.

1.3.2 Solver Toolkit

Solvers contain the algorithm logic to solve network optimization problem instances. Solvers perform
data manipulations, update the associated animation mechanisms, and inform core-GIDEN of the
animation changes. As mentioned previously, solvers are implemented as derived classes of a generic
solver base class named ExecBase. In this section we describe how GIDEN’s solver toolkit is
organized; descriptions of the solvers included in the toolkit are given in Chapter 3.

While each network optimization problem has a variety of solution algorithms, the input and output
of each algorithm for a given problem are typically the same. For this reason, algorithm implemen-
tations belonging to the solver toolkit are implemented as derived classes of an associated problem
class, rather than as classes derived directly from ExecBase. For example, rather than having
the solver for Dijkstra’s algorithm as a derived class of ExecBase, the solver class for Dijkstra’s
algorithm is a derived class of the ShortestPath problem class which is derived directly from
ExecBase. Figure 1.6 illustrates the relationship between individual solver classes and ExecBase.
For a given problem all solvers will have a collection of common input and output requirements (e.g.,

Solver Toolkit

²
±

¯
°ExecBase.java

?²
±

¯
°MaxFlow.java . . .

?

©©©©©¼

HHHHHj²
±

¯
°GenAugPath.java
²
±

¯
°ShortAugPath.java
²
±

¯
°PreFlowPush.java . . .

©©©©©¼

HHHHHj²
±

¯
°ShortestPath.java

²
±

¯
°MinCostFlow.java

Figure 1.6: Class hierarchy for solver implementations.

all maximum-flow problem solvers require a source node, a sink node, and edge capacities as input,
and provide edge flows and a minimum cut as output). Similarly, all solvers for a given problem will
also have a collection of common animation sets, namely those associated with displaying problem
instance solutions. The base class for each problem (e.g., ShortestPath) is designed to include
all common characteristics for related solvers, allowing individual solver classes to benefit from code

4See Section 4.1.2 for a description of these methods.

20 Preliminaries: Network Optimization and GIDEN

reusability at the problem level. In addition to having the actual solver logic, individual solver
classes are only required to have data checking routines and animation sets that differ from those of
other solvers for the same problem.

Although the solver toolkit included with GIDEN covers a range of problems and is continually
expanding, many users will want to add their own solvers to the toolkit. The following features of
GIDEN facilitate solver development:

• prototypes for new solver implementations

• direct access to network data structures

• access to animation set creation and manipulation

• visual debugging through the user interface

The necessary tools for adding solvers to the solver toolkit are a text editor and the Java Development
Kit (JDK), or some Java-based integrated development environment (IDE). Additionally, you must
have access to the implementor’s distribution of GIDEN.5 The process of developing new solvers
and adding them to the toolkit is described in Chapter 4.

1.3.3 Network Data Structures

The network data structures library is based on standard graph data structures (see, for example,
[9]). Node and edge arrays are provided to associate values with nodes and edges. Additional
data structures include single and double linked lists, priority queues, queues, and other network
related data structures. Both the single and double linked lists were developed from a common base
class that supports all linked list methods. A common base that supports both types of linked lists
provides a simple mechanism to switch between single and double linked lists without needing to edit
or recompile the source code. Such libraries allow users to quickly build efficient network algorithm
implementations. Our prototype version of GIDEN was implemented in the C++ programming
language and used LEDA (Library of Efficient Data types and Algorithms) developed at the Max-
Planck-Institut für Informatik (see [8]). The current data structures library used by GIDEN is based
on a similar environment written by us in C++ (see [4]).

5Currently, only limited documentation is available to support GIDEN solver developers. For this reason, the
implementor version of GIDEN is available only by special request. Please contact the authors for more information.

Chapter 2

Using the GIDEN Environment

2.1 The GIDEN User Interface

The GIDEN graphical user interface (GUI) features a single controller window and multiple network
windows. In addition, each network window may have an auxiliary pseudocode window when it is
operating in solver execution mode.

The main purpose of the GIDEN controller window (see Figure 2.1) is to create and manage all
network windows, and to provide central access to the network editing tools. Additionally there are
a few miscellaneous “global” operations that are available through the controller window.

GIDEN

File Tools Nets Help

Figure 2.1: GIDEN-2.0 controller window with “Edit Values” tool selected.

The second type of window is a network window. The controller window can create and manage
multiple network windows simultaneously, each running in its own thread. Each network window can
be used in two modes. In edit mode, a network window can be used to create and modify networks,
as illustrated in Figure 2.2. A network window is in solver mode when executing an algorithm
implementation from the GIDEN solver toolkit. An example of a network window in solver mode is
shown in Figure 2.3, along with an auxiliary pseudocode window.

22 Using the GIDEN Environment

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8 9

1011

GIDEN 2.0alpha

GIDEN (untitled2)

File Edit Node Data Edge Data Solvers

Figure 2.2: GIDEN-2.0 network window in edit mode.

(3 , 1 , $ 2)

(1 , 1 , $ 2)

(0 , 2 , $ 1)

(3 , 0 , $ 3)

(1 , 4 , $ 1)

(3 , 1 , $ 2) (3 , 0 , $ 3)

(1 , 1 , $ 2) (1 , 4 , $ 1)

(0 , 2 , $ 1)
4 , 0

0,-2

0,-2

-4,-3 4 , 0

0,-2

-4,-3

0,-2

Leaving EdgeEntering EdgeTree Trace Exit

Initial flow cost = $36. (8 phase1 iterations)

GIDEN "MinimumCost Flow 2a.gdn"

File Edit Options

 Next

01: algorithm network simplex;
02: {
03: /* PhaseI */
04: determine an initial network simplex tree structure T;
05: calculate the initial flow x and node potentials pi;
06:
07: /* PhaseII */
08: while (some edge not in T violates optimality conditions)
09: {
10: select an entering edge e that violates its optimality conditions;

PseudoCode for "Network Simplex"

GIDEN PseudoCode

File PC Font

Figure 2.3: GIDEN-2.0 network window during solver execution with pseudocode displayed.

2.2 Building and Editing Networks 23

2.2 Building and Editing Networks

The GIDEN environment includes many features for building network instances. In this section we
describe the facilities for drawing networks and for managing information associated with a network’s
nodes and edges. Throughout this section we assume that the network window of interest is in edit
mode.

It is important to note that the current version of GIDEN does not include facilities to
“undo” any editing action.

2.2.1 Drawing Networks

Network instances in GIDEN are created by placing nodes and edges on the “drawing canvas” of a
network window that is in edit mode. There are several tools and operations available in GIDEN for
drawing networks from scratch or for modifying existing networks. Many of the drawing operations
use the “edit tools” that are available through the main controller window, while other operations
and settings are accessible through the menu system of a network window.

Edit Tools

A prominent feature of the controller window is the collection of icons representing available “edit
tools.” Each of these tools is used to control certain editing operations in network windows. An edit
tool may be selected by clicking on the associated tool icon or by choosing the appropriate entry
from the Tools menu in the controller window. Only one tool may be selected at any given time,
and this selected tool is available to all network windows that are running in edit mode.

Most of the “edit tools” available in the controller window are used for drawing operations, such
as creating, deleting, and placing nodes and edges on the canvas. Other tools are used to set the
direction of edges, to control the placement of edge labels, and to edit information associated with
nodes and edges. This section describes the purpose and usage of each of the edit tools.

Trail

The Trail Edge tool is used to draw a series of nodes and edges. After selecting the
tool, the first click on the drawing canvas will either create a new node at the mouse
position or, if a node already exists at that position, it will select that pre-existing
node. Subsequent clicks on the canvas will create edges in series from the most recently

selected node to the current mouse position, creating a new node at the current position if none
exists.

Star

The Star Edge tool is used to draw several edges emanating from a single node. After
selecting the tool, the first click on the drawing canvas will either create a new node
at the mouse position or, if a node already exists at that position, it will select that
pre-existing node as the anchor node. Subsequent clicks on the canvas will create an

edge between the anchor node and the current mouse position, creating a new node at the current
position if none exists.

New Node

The New Node tool is used to create a new node on the drawing canvas. After selecting
the tool, each click on the canvas will create a new node at the current mouse position.
If a node already exists at the selected location, then no action is performed.

24 Using the GIDEN Environment

New Edge

The New Edge tool is used to create a new edge on the drawing canvas. In order to
create an edge e = (i, j) between existing nodes i and j, first click on node i, and then
click on node j.

Reverse Edge

The Reverse Edge tool is used to reverse the direction of an edge. When using this tool,
selecting an edge e = (i, j) will swap the head and tail nodes such that e = (j, i). (Note:
This tool will still operate even when a network is being drawn as undirected. To see
the direction of an edge, turn on the Directed Edges option in the network window’s Edit

menu.)

Edit Values

27
The Edit Values tool is used to edit information that is associated with the nodes and
edges. To edit the currently displayed information, use the mouse to select the label of
the target node or edge, and then type the new information in the resulting text input
area. See Section 2.2.2 for more information on editing data fields.

Select

The Select Item tool is used to select multiple nodes and edges that will either be deleted
from or re-positioned on the drawing canvas. With this tool there are two methods for
selecting nodes and edges. The first method is to use single mouse clicks to select
individual nodes and edges. The second method is to “click and drag” the mouse

over a region of the canvas, which results in selecting all items in the target region. Holding the
<shift> key when using the first method will toggle the selection status of the item. Holding the
<shift> key when specifying a region of the canvas will prevent previously-selected items from
being automatically de-selected.

Once selected, nodes and edges can be repositioned by dragging them with the mouse while holding
the <control> key, or by dragging with the middle mouse button on platforms that support a
3-button mouse. Fine tune positioning for selected items is available by using the Nudge Selected

operations in the Edit menu. For more information on editing operations available for selected items,
see Section 2.2.1 below.

Move

The Move Item tool is used to re-position items on the drawing canvas. When this tool
is selected, the cursor changes shape to indicate when the mouse is positioned over a
movable item. Use the mouse to select and drag the target item from its current position
to the desired location on the canvas. Items that can be moved using this tool include

nodes, edge labels, and edge anchor points. For each of these items, details differ on the boundaries
accepted for selecting an item, and the rules used to govern item positioning:

Selecting and Positioning Nodes. Nodes may be selected by pressing the mouse button anywhere
in the boundary of the drawn node. The selected node can then be dragged to any position on the
drawing canvas, without restriction.

Selecting and Positioning Edge Labels. The position of an edge label is tied to the location of
the anchor point for the associated edge. An edge label is selected by pressing the mouse button
anywhere in the boundary of the currently displayed label.1 The edge label can then be positioned
to the north (centered), south (centered), east (left aligned), or west (right aligned) of the edge
anchor point.

1If the edge data field currently displayed is empty for a particular edge, then the associated edge label cannot be
re-positioned. In this case, temporarily change the displayed data to Edge ID (or some non-empty data field) before
attempting to move the edge label.

2.2 Building and Editing Networks 25

Selecting and Positioning Edge Anchor Points. Edge anchor points are used to control the shape
of the drawn edge and the general location of the associated edge label. An edge anchor point is
selected by pressing the mouse button anywhere in the boundaries of the box region drawn at the
current anchor point location. The selected edge anchor point can then be dragged to any position on
the drawing canvas, without restriction. To allow edge anchor point to be automatically calculated,
click the edge anchor point while holding the <shift> key.

Delete!
The Delete Item tool is used to delete nodes and edges from the drawing canvas. To
delete a node, click anywhere in the boundary of the drawn node. To delete an edge,
click on the associated edge anchor point or edge label. Note that deleting a node results
in all adjacent edges being deleted as well.

Edit Menu Operations and Settings

This section briefly describes the drawing operations and settings that are available through the Edit

menu of a network window in edit mode. The scope of these menu selections is limited to the single
target network window. Several of the menu choices perform operations that are available only when
the Select Item tool is enabled; see the Select Item tool description above for more information.

Cut Delete the selected nodes and edges from the drawing canvas. This choice is avail-
able only if the Select Item tool is enabled and there are nodes and/or edges that
are currently selected.

Clear Delete all nodes and edges on the drawing canvas. This choice is always available
in edit mode.

Select All Select all nodes and edges on the drawing canvas. This choice is available only if
the Select Item tool is enabled.

Select All Nodes Select all nodes on the drawing canvas. This choice is available only if the
Select Item tool is enabled.

Nudge Selected Move all selected nodes and edges by one pixel in the chosen direction.2 This choice
is available only if the Select Item tool is enabled.

Enable Grid Turn on a drawing grid for positioning nodes. Subsequent operations for adding
or moving a node will align the node’s center with a grid intersection point.2 This
choice is always available in edit mode.

Directed Edges This setting determines if an edge is drawn as directed or undirected. This choice
is always available in edit mode, but may be overridden by an executing solver.

2.2.2 Managing Node and Edge Information

Associated with each network window in GIDEN is an underlying network object. This network
object is composed of the following elements: a node set, an edge set, node data fields, and edge data
fields. The member elements of the (possibly empty) node and edge sets correspond to the nodes
and edges displayed on the network window’s drawing canvas, and can thus be managed through
the drawing operations described in Section 2.2.1. In this section we describe the facilities within
GIDEN for managing the node and edge data fields.

The node and edge data fields (or “arrays”) are internally stored as NodeArray and EdgeArray
objects (see [4]). Each node and edge array has a default data type associated with it, which

2The drawing grid is ignored when using the Nudge Selected operations to move nodes.

26 Using the GIDEN Environment

determines how the values of the array are parsed. Currently two data types are supported: “text”
type and “integer” type. Values in a text array are represented using Java String objects, and
values in an integer array are represented using Java Integer objects. Data fields are handled
differently within GIDEN based on their associated type; for an example of this, see the topic
“Editing Data Fields” in this section.

Default Data Fields

When a network object is constructed, it is created with three default data fields that are internally
“owned” and managed by GIDEN. Because these fields are managed internally by the environment,
the values associated with these fields cannot be edited directly by the user. These default fields are
named Node ID, Edge ID, and Euclidean Length. The following text describes these fields and their
intended usage:

Node ID This is a node data field of text type. As the name suggests, the node array
contains a unique identifier for each node in the network object. The primary
purpose of the Node ID array is to distinguish nodes internally within GIDEN.

Edge ID This is an edge data field of text type. Analogous to the Node ID array for nodes,
this data field is used as a container for unique edge identifiers.

Euclidean Length This is an edge data field of integer type. The array is used to store integer
values that represent the Euclidean distance between an edge’s two endpoint
nodes. Values are calculated using the center coordinates of the endpoint nodes.
Note that the value associated with an edge gives the approximate length of that
edge on the canvas if it is drawn as a straight line (e.g., if the edge’s anchor
point is not manually positioned). The value associated with a given edge is
automatically recalculated when either of its endpoint nodes is moved (e.g., with
the Move Item tool). Although managed internally, the Euclidean Length array is
provided as a convenience for end-users. The data array may be used as an input
to any of the GIDEN solvers that require an integer type edge array as input (see
Section 2.3.2).

User-Defined Data Fields

In addition to the default arrays that are associated with every network, users can create new node
and edge data fields. These user-defined arrays are created through the Add Data Field... operation
in a network window’s Node Data or Edge Data menu (see Section 2.2.2). Selecting this operation
will evoke a dialog for specifying the following data field properties:

Name This is a text identifier for the data field. This is the name that will be listed in the
appropriate data field menu (see Section 2.2.2) and in the solver input dialogs (see
Section 2.3.2). Valid names can include numbers, letters, spaces, and dashes. To
avoid confusion, you cannot assign a name to a new node (edge) array that conflicts
with an existing node (edge) array name.3 Leading, trailing, and consecutive spaces
will be removed from the name.

Default Value This is the default value of an item in the array. When an array is created, this
value is assigned to all existing nodes (edges). It will also be the value assigned to
all newly created nodes (edges).

3For the purpose of comparison, names conflict if they are equal when ignoring case. For example, the name
“length” conflicts with the name “Length”.

2.2 Building and Editing Networks 27

Type This is the data type associated with the array. Currently two data types are
supported: “text” type and “integer” type. Values in a text array are represented
using Java String objects, and values in an integer array are represented using
Java Integer objects. The underlying data type of an array determines the range
of valid member values (as according to Java specifications).

The Data Field Menus

This section briefly describes the operations and settings that are available through the Node Data

and Edge Data menus of a network window. Through these menus the user can create new arrays,
delete existing arrays, and select the data fields that are displayed in the node and edge labels on
the drawing canvas:

Creating New Arrays. New node and edge data fields are created using the Add Data Field... oper-
ation in the appropriate data menu. Selecting this operation will result in a dialog for specifying
the properties of the new array. See the topic “User-Defined Data Fields” in this section for more
information.

Deleting Existing Arrays. Existing data fields can be deleted from the network by selecting the
array name through the Delete Data Field submenu. Only user-defined data fields may be deleted.
In particular, the default data fields Node ID, Edge ID, and Euclidean Length are managed internally
and can not be deleted (see Section 2.2.2).

Selecting Display Arrays. When a network window is in edit mode, each node and edge has an
associated label that is displayed on the drawing canvas. To set which data field values are displayed
in the node (edge) labels, select the appropriate array name from the top portion of the Node Data

(Edge Data) menu.

Editing Data Fields

Node and edge data fields are edited using the Edit Values tool (see Section 2.2.1). Follow the steps
below to edit a user-defined array:

1. Select the target array as the display array under the appropriate data menu in the network
window.

2. Select the Edit Values tool from the controller window.

3. Use the mouse to select the label of the node or edge whose value you want to change. This
should replace the label with a text input box that contains the current value.

4. Type the new data value in the text input box.

5. Press <enter> to accept the new value.

After entering a data value in the text input box, the new value is checked to ensure that it is valid
for the underlying array data type. For example, integer type arrays will not accept values that are
out of range for a Java Integer, or values that contain non-digit characters. If the specified value
is invalid, then a warning will appear and the edit will be ignored.

28 Using the GIDEN Environment

2.3 Running Solvers

GIDEN users can create and modify networks using the mouse and keyboard as described in the
previous section. Once a network is built (or opened), the user may select a solver implementation to
apply to the displayed network. The process of running a GIDEN solver is outlined in the following
steps:

1. Select the desired solver from the Solvers menu.

2. Specify the input data fields required by the solver (if any).

3. Execute the selected solver.

4. Interpret the solver results.

In this section we describe these steps more carefully.

2.3.1 Selecting a Solver

The first step in executing a solver is to select the solver name from the Solvers menu of the network
window (only available in edit mode). The solvers currently available in GIDEN are categorized
according to the underlying problem type. Currently, the solver toolkit provides solvers from four
problem domains: minimum spanning tree problems, shortest path problems, maximum flow prob-
lems, and minimum-cost flow problems.4

After being chosen from the Solvers menu, the solver will analyze the current network object. If the
solver is unable to cast the displayed network into an appropriate problem instance, then it returns
immediately (leaving the network window in edit mode). Otherwise, the network window is switched
to solver mode, and the user may be prompted for required input information, as described below.

2.3.2 Specifying Inputs

When a solver is selected from the toolkit, the target network window switches to solver mode.
At this point, most GIDEN solvers will generate a dialog window to prompt the user to specify
the node and edge input arrays required by the solver. This solver input dialog has two columns
of information. The first column (left) lists the logical names of the needed solver inputs. These
logical names are text identifiers that the solver uses to request and retrieve the input arrays. The
second column (left) includes choice menus that list available candidate arrays (if any) that can be
associated with the corresponding input logical name. The candidate arrays included in the choice
menus are selected based on the kind of array (i.e., node or edge) and the underlying data type. (For
example, the Prim solver will list all edge arrays of integer type as candidates for its “Length” input
array.) After selecting the desired input arrays, click the Accept button. To exit the dialog without
making selections, click the Cancel button. In this case, the solver will exit and the network window
will return to edit mode. Note that some networks may not contain node or edge arrays that match
the requirements of a given solver. In this case the dialog will indicate that the appropriate data is
not available, and the Accept button will not be able to validate the input selections. To exit the
solver, click the Cancel button.

Aside from the initial input dialog, some solvers will ask for user input during solver execution. In
most cases, directions for specifying the needed input will appear in the status line of the network

4Some distributions also include heuristic solvers for the symmetric traveling salesman problem.

2.3 Running Solvers 29

window. Typical examples would require the user to use the mouse to select a particular node, or
use the keyboard to specify an option setting.

2.3.3 Controlling Execution

After selecting the needed input arrays (if any), the solver is ready to be run by the user. You
will notice several features of a network window in solver mode that distinguish it from when it is
running in edit mode. Most notably, the bottom area of the network window will contain several
execution-related controls: an Exit button, an “action” button, an animation slider, and possibly
several animation-set buttons. Each of these controls is described below:

• The Exit Button: Selecting this button will cause the solver to terminate at the earliest oppor-
tunity and will result in the network window returning to edit mode.

• The Action Button: The appearance and functionality of the action button depends on the
state of the solver and several related settings. Depending on these settings, the action button
will display one of the following labels: Trace, Step, Go, Pause, Final, or Reset.

When the action button is labeled Reset, the solver has completed execution. Selecting the
action button when it displays this label causes the solver to begin execution again, as if
the solver was selected from the Solvers menu. The topics “Final Animation Mode”, “Trace
Animation Mode”, “Step Animation Mode”, and “Continuous Animation Mode” that appear
later in this section describe the functionality of the action button when it displays other
labels.

• The Animation Slider: The animation slider is used to determine the current animation mode
(“final”, “trace”, or “continuous”). It is also used to control the speed of execution when
operating in continuous animation mode. For more details, see the topics “Final Animation
Mode”, “Trace Animation Mode”, and “Continuous Animation Mode” later in this section.

• Animation-Set Buttons: Animation-set buttons are used to specify which information about
the current solver will be visually displayed during “trace” or “continuous” animation mode
(see below). Each of the buttons corresponds to a solver-specific action or state, and visually
represents that action or state using a pre-determined color. Under usual circumstances, each
animation-set buttons can be either “enabled” or “disabled” to signify whether or not the
underlying action or state is to be displayed. The state of an animation-set button is toggled
by clicking on the button when in “trace” mode or “continuous” mode. For details on the
use of animation-set buttons, see the topic “Trace Animation Mode” later in this section. See
Chapter 3 for information on the animation sets provided with each of the GIDEN solvers.

There are several different ways to execute a GIDEN solver, depending on the level of visualization
that is desired. We will describe the basics here, but the best way to learn about the algorithm
animation capabilities within GIDEN is to experiment with the various solvers and settings. We
will cast our discussion of solver execution by describing five different “modes” of animation: final
animation mode, trace animation mode, step animation mode, continuous animation mode, and
pseudocode animation mode.

Final Animation Mode

Final animation mode is used to execute a given solver without any animation. To run in final mode,
position the animation slider to the far left (so that the action button is named Final), and select the
action button. This will execute the solver until it terminates — usually with an optimal solution
or with a certificate of infeasibility. At conclusion of solver execution, the action button name will
change to Reset.

30 Using the GIDEN Environment

Trace Animation Mode

Trace animation is intended as the default animation mode. When running a solver in trace mode,
the detail of solver animation depends on the state of the animation-set buttons. In particular, the
solver will suspend execution at certain epochs that correspond to the action or underlying state
of an enabled animation-set button. Each time execution is suspended, the network is redrawn to
reflect the current state of the solver.

To run a solver in trace mode, first position the animation slider to the far right, and make sure
that the Detail Animation setting is turned off in the Options menu. The action button should now
display the name Trace. To execute the solver, use the mouse to repeatedly select the Trace button.

You can think of trace animation mode as follows: Each click on the Trace button says to the
solver “start running until something interesting happens”, where the solver decides if something
“interesting” happened based on which animation-set buttons are enabled.

Step Animation Mode

Note: Step animation mode is intended to be used primarily for solver debugging purposes. We
recommend against end users executing solvers in step mode.

Step mode is similar to trace mode with two major differences: (1) All animation-set buttons are
treated as enabled, and (2) solver execution suspends whenever any item is placed in an animation
set. Running a solver in step mode is similar to trace mode, except that the Detail Animation setting
must be turned on in the Options menu.

Continuous Animation Mode

When executing in trace mode, a solver will suspend execution at certain epochs that correspond
to “interesting” events. Then to resume solver execution, the user must manually select the Trace

button. Continuous animation mode is similar to trace mode except that there is a built-in time
delay between when a solver suspends, and when it resumes execution. The amount of this delay is
determined by the position of the animation slider.

To execute a solver in continuous animation mode, first position the animation slider strictly between
the far left and the far right positions. (The action button name changes to Go when the slider is
positioned between the two extremes.) The built-in delay will decrease as the slider is moved to the
left and increase as it is moved to the right.5 After enabling the animation-set buttons of interest,
press the Go button. This will start execution and change the action button name to Pause. The
solver will continue to execute until it terminates or until you select the Pause button.

Continuous animation mode can be used with the Detail Animation setting either enabled or disabled.
When detail animation is enabled, the behavior of continuous animation is similar to executing in
step mode with a built-in delay. If the setting is not enabled (as by default), then continuous
animation is similar to trace mode with an automatic delay.

5It may help to think of “final mode” as the far left extreme, where there is no delay, and of “trace mode” as the
far right extreme, where the delay is infinite. However the continuous animation delay is actually a linear function
between two finite values; the maximum automatic delay is approximately 5 seconds.

2.3 Running Solvers 31

Pseudocode Animation Mode

As shown in Figure 2.3, certain GIDEN solvers will display an auxiliary window with a text-based
pseudocode description of the algorithm. This pseudocode window contains a Next button, that is
used to control solver execution by stepping through the algorithm logic. Each time the user selects
the Next button, the solver resumes execution until it encounters the next algorithmic step that
is represented in the pseudocode. The solver then suspends execution, highlights the current line
of pseudocode, and redraws the network to reflect the state of the solver. Using this approach to
control solver execution is what we mean by running in pseudocode mode.

Trace, step, and continuous animation modes all depend on the animation sets that are present (and
enabled) in a solver. In contrast, the pseudocode animation mode is entirely independent of the
available animation sets, and instead is driven by the text description of the underlying algorithm.

To execute a solver in pseudocode mode, the auxiliary pseudocode window must be visible. If this
window is not visible by default (it will depend on the position of the network window and other
factors), you may evoke the window by enabling the Show Pseudo-Code Window setting from the
Options menu. Then click repeatedly on the Next button to step through solver execution.

Please note that not all solvers provide a pseudocode description of the algorithm. For solvers
that do not support pseudocode animation mode, the Show Pseudo-Code Window setting will be
automatically disabled.

2.3.4 Interpreting Results

Once a solver has found an optimal solution,6 or determined that no such solution exists, it will
terminate execution. Upon termination, most GIDEN solvers will display information about the
final solution (possibly including a “certificate” of optimality), or they will provide a certificate of
infeasibility. In either case, usually the animation-set buttons will be replaced with a a “result key”
that can be used to interpret the solver’s final result. Additional information about the solution may
be provided in the network window’s status line. The user is referred to Chapter 3 for information
on the particular result information provided by each of the default GIDEN solvers.

6Some solvers may not yield an optimal solution, but may yield a “good” solution be some measure. These solvers
are known as “heuristics.”

32 Using the GIDEN Environment

Chapter 3

Solver Reference

In this chapter, we describe the network optimization problems that can be solved using the GIDEN
solver toolkit, and we give information on available solvers. The information we present for each
solver includes algorithm pseudocode that closely follows the algorithm descriptions presented in
the text Network Flows: Theory, Algorithms, and Application, by Ahuja, Magnanit, and Orlin [1];
we have made it a priority to include the pseudocode exactly as it appears in [1] whenever possible.
The following assumptions are made for all solvers in the GIDEN solver toolkit:

1. The network does not contain any parallel edges.

2. The network does not contain any loops.

3. Lower bounds on edge flows are zero-valued.

At present, GIDEN’s solver toolkit includes implementations for the spanning tree, shortest path,
maximum flow, and minimum-cost flow problems:

Minimum Spanning Tree

- Kruskal’s algorithm

- Prim’s algorithm

Shortest Path

- Dijkstra’s algorithm

- FIFO label correcting algorithm

Maximum Flow

- Generic augmenting path algorithm

- Shortest augmenting path algorithm

- Preflow-push algorithm

Minimum-Cost Flow

- Capacity scaling algorithm

- Cycle canceling algorithm

- Out-of-kilter algorithm

34 Solver Reference

- Network simplex algorithm

- Successive shortest path algorithm

Additional solver implementations are under development and testing.

3.1 Minimum Spanning Tree Problem 35

3.1 Minimum Spanning Tree Problem

Given an undirected network N = (G, l), the minimum spanning tree problem is to find a spanning
tree of G with minimal length, where the length of a tree T is calculated as

∑

e∈T le.

Input: An undirected network N = (G, l), where l ∈ RA.

Formulation:

min
∑

e∈T le
s.t. T is a spanning tree of G.

Feasible Output: A minimum spanning tree T ∗ and the tree’s total length
∑

e∈T∗ le.

Infeasible
Output:

A proper subset R of N , such that no edges (i, j) exist with i ∈ R and j ∈ N\R.
We also give either a forest F ∗ composed of a minimum spanning tree T ∗ for each
component of G, or a minimum spanning tree for the component of G with node
set R.

Required Problem Input

GIDEN solvers derived from the MinSpan problem base class will request the following data field
in the input dialog:

“Length” — edge array of integer data type;
provides edge lengths le for each e ∈ A.

36 Solver Reference

3.1.1 Kruskal’s Algorithm

algorithm kruskal;
{

sort edges in nondecreasing order of length;
LIST := ∅;
while (|LIST| < |N | − 1 and unexamined edges exist) do
{

e := unexamined edge with minimal length;
if (adding e to LIST does not create a cycle) then

add e to LIST;
else

discard e;
}

} (END of ‘kruskal’)

Solver-Specific Input: (none)

Solver Animation Sets:

Trial (red): An edge being considered for inclusion on LIST.

Acquired (green): Edges included on LIST and nodes with an incident edge on LIST.

Discarded (yellow): Edges e = (i, j) that were considered for inclusion in LIST but were rejected
because adding e to LIST would have created a cycle in the component of G containing
node i and node j.

Label Information:

Edge labels: Edge length le for each edge e ∈ A.

Node labels: None.

Feasible Result Information:

Minimum Spanning Tree (orange): Used to color the edges in a minimum spanning tree of G.
The tree length is reported in the network window status line.

Infeasible Result Information:

Forest of Component-wise Minimum Spanning Trees (orange): A minimum spanning tree is
found for each component; this is used to color the edges in each such spanning tree.
The total forest length is reported in the network window status line.

3.1 Minimum Spanning Tree Problem 37

3.1.2 Prim’s Algorithm

algorithm prim;
{

/* initialize algorithm information */
di :=∞ and pred(i) := null for all i ∈ N;
P := ∅, L := ∅, U := N;

/* setup for starting at node s */
ds := 0;
move node s from set U to set L;

while (the set L is non-empty) do
{

select node i ∈ L such that di ≤ dj for all j ∈ L;
move node i from set L to set P;

for (all nodes j with (i, j) ∈ A) do
{

if (dj > l(i,j)) then
{

dj := l(i,j);
pred(j) := i;
if (j ∈ U) then move j from set U to set L;

}
}

}
} (END of ‘prim’)

Solver-Specific Input:

s — start node for searching the network

Solver Animation Sets:

Trial (red): Nodes i ∈ L and edges (i, pred(i)) for nodes i ∈ L such that pred(i) 6= null.

Acquired (green): Nodes i ∈ P and edges (i, pred(i)) for nodes i ∈ P such that pred(i) 6= null.

Discarded (yellow): An edge (i, j) ∈ A such that i ∈ P and j ∈ L (or vice versa) is “discarded”
if it is considered as a candidate predecessor edge for node j but is rejected because either

(i) at the time (i, j) is considered, node j already has a predecessor edge of length no
greater than the length of (i, j), i.e., l

(pred(j),j)
≤ l(i,j)), or

(ii) a predecessor edge of shorter length is later found, before node j is permanently
labeled.

Label Information:

Edge labels: Edge length le for each edge e ∈ A.

Node labels: The length di ≡ l
(pred(i),i)

of the predecessor edge (pred(i), i) from each node

i ∈ N to the connected component R. Nodes with di =∞ are labeled “-”.

Feasible Result Information:

Minimum Spanning Tree (orange): Used to color the edges in a minimum spanning tree of G.
The tree length is reported in the network window status line.

38 Solver Reference

Infeasible Result Information:

Minimum Spanning Tree on R (orange): A minimum spanning tree for the component R of the
network that contains the specified starting node s. The length of the minimum spanning
tree on component R is reported in the network window status line.

3.2 Shortest Path Problem 39

3.2 Shortest Path Problem

Given a directed network N = (G, l, s), the shortest path problem is to find a set of dipaths from
node s to each node i ∈ N\{s} with minimal length, where the length of an s-i dipath Psi for
i ∈ N\{s} is calculated as

∑

e∈Psi
le.

Input: A directed network N = (G, l, s), where l ∈ RA and s ∈ N .

Formulation:

For each node i ∈ N\{s},
min

∑

e∈Psi
le

s.t. Psi is an s-i dipath in G.

Feasible Output: A shortest path tree T ∗ that includes a shortest path P ∗
si for each i ∈ N\{s}, the

tree’s total length
∑

e∈T∗ le, the shortest path lengths to each node i ∈ N , and
the sum of the shortest path lengths,

∑

i∈N

∑

e∈P∗
s,i

le.

Infeasible
Output:

We return one of the following: (1) A proper subset R of N , such that s ∈ R and
there are no edges (i, j) ∈ A such that i ∈ R and j 6∈ R; in this case, we also give
the shortest path tree from s to all nodes in R. (2) A negative length cycle C in
the component of G containing s; in this case we also give the length of the cycle,
∑

e∈C le < 0.

Required Problem Input

GIDEN solvers derived from the ShortestPath problem base class will request the following
information:

“Length” — edge array of integer data type;
provides edge lengths le for each e ∈ A.

s — start node for searching the network

The “Length” data field is requested in the solver input dialog, and the source node s is requested
at the start of solver execution.

40 Solver Reference

3.2.1 Dijkstra’s Algorithm

algorithm dijkstra;
{

/* initialize algorithm information */
di :=∞ and pred(i) := null for all i ∈ N;
P := ∅, L := ∅, U := N;

/* setup for starting at node s */
ds := 0;
move node s from set U to set L;

while (the set L is non-empty) do
{

select node i ∈ L such that di ≤ dj for all j ∈ L;
move node i from set L to set P;

for (all nodes j with (i, j) ∈ A) do
{

if (dj > di + l(i,j)) then
{

dj := di + l(i,j);
pred(j) := i;
if (j ∈ U) then move j from set U to set L;

}
}

}
} (END of ‘dijkstra’)

Solver-Specific Input:

Additional requirement that the selected “Length” input array can contain only non-negative
values.

Solver Animation Sets:

Trial (red): Nodes i ∈ L and edges (i, pred(i)) for nodes i ∈ L such that pred(i) 6= null.

Acquired (green): Nodes i ∈ P and edges (i, pred(i)) for nodes i ∈ P such that pred(i) 6= null.

Discarded (yellow): An edge (i, j) ∈ A such that i ∈ P and j ∈ L is “discarded” if it is considered
as a candidate predecessor edge for node j but is either

(i) rejected immediately, because an s− j dipath has already been found that is at least
as short as the s− j dipath through (i, j), i.e., dj ≤ di + l(i,j), or

(ii) rejected later, because a shorter s − j dipath is found before node j is permanently
labeled.

Label Information:

Edge labels: Edge length le for each edge e ∈ A.

Node labels: Current “node distance” di from the starting node s. Nodes with di = ∞ are
labeled “-”. Node s is labeled “s” initially and then with its “distance label,” ds = 0.

Feasible Result Information:

Shortest Path Tree (orange): Used to color a shortest path tree rooted at s and spanning the
nodes of G. The total tree length, along with the sum of (finite) path lengths is reported
in the network window status line. The node labels report the final distances di for each
i ∈ N .

3.2 Shortest Path Problem 41

Infeasible Result Information:

Shortest Path Tree (orange): Used to color a shortest path tree rooted at s for the component
R of nodes and edges that are di-path reachable from s. This tree length, along with the
sum of (finite) path lengths is reported in the network window status line.

42 Solver Reference

3.2.2 FIFO Label Correcting Algorithm

algorithm fifo label-correcting;a

{
ds := 0 and pred(s) := null;
dj :=∞ for each node j ∈ N\{s};
QUEUE := {s};
while (QUEUE not empty) do
{

remove a node i from QUEUE;
for (each edge (i, j) ∈ A(i)) do
{

if (dj > di + l(i,j)) then
{

dj := di + l(i,j);
pred(j) := i;
if (j 6∈ QUEUE) then add j to QUEUE;

}
}

}
} (END of ‘fifo label-correcting’)

aSee Chapter 5, Sections 3-5 of [1] for a description of the FIFO label
correcting algorithm as presented here.

Solver-Specific Input: (none)

Solver Animation Sets:

Accepted (green): Nodes i ∈ N such that di < ∞, and edges (pred(i), i) for each i such that
i 6= s (whose predecessor node is undefinied).

Current (red): The node i taken from the QUEUE whose outgoing edges are being examined,
and the edge that is currently being examined.

Discarded (yellow): An edge (i, j) ∈ A such that i ∈ P and j ∈ L (or vice versa) is “discarded”
if it is considered as a candidate predecessor edge for node j but is rejected because either

(i) node j already has a predecessor edge of length no greater than the length of (i, j),
i.e., l

(pred(j),j)
≤ l(i,j)), or

(ii) a predecessor edge of shorter length is later found before node j is permanently
labeled.

Label Information:

Edge labels: Edge length le for each edge e ∈ A.

Node labels: Current “node distance” from the acquired component, di. Nodes with di =∞
are labeled “-”. Node s is labeled “s”; its “distance” is equal to zero.

Feasible Result Information:

Shortest Path Tree (orange): Used to color a shortest path tree rooted at s and spanning the
nodes of G. The total tree length, along with the sum of (finite) path lengths is reported
in the network window status line. The node labels report the final distances di for each
i ∈ N .

3.2 Shortest Path Problem 43

Infeasible Result Information:

Shortest Path Tree (orange): Used to color a shortest path tree rooted at s for the component
R of nodes and edges that are di-path reachable from s. This tree length, along with the
sum of (finite) path lengths is reported in the network window status line.

Negative-Cost Cycle (blue): Used to color a directed cycle in the network with negative total
length (this is known as a “negative cost cycle”). The length (cost) of the cycle is reported
in the network window status line.

Note that the infeasible result information that is reported depends on the component R of nodes and edges
that are di-path reachable from s. If this component contains a negative cost cycle, then this cycle will
be reported. Otherwise, only the shortest path tree on component R will be reported — even if there is a
negative cost cycle present elsewhere in the network.

44 Solver Reference

3.3 Maximum Flow Problem

Given a directed network N = (G, u, s, t), the maximum flow problem is to find a feasible s-t flow of
maximal value, where the value of a feasible flow x is calculated as

∑

{i:(i,t)∈A} x(i,t). We say a flow
x is feasible for the maximum flow problem if it satisfies the bound constraints, 0 ≤ x ≤ u, and the
balance constraints:

∑

{j:(i,j)∈A}

x(i,j) =
∑

{j:(j,i)∈A}

x(j,i) for each node i ∈ N\{s, t}.

Input: A network N = (G, u, s, t), where u ∈ ZA+ and s, t ∈ N .

Formulation:

max
∑

{i:(i,t)∈A} x(i,t)

s.t.
∑

{j:(i,j)∈A} x(i,j) =
∑

{j:(j,i)∈A} x(j,i) for each node i ∈ N\{s, t}.

0 ≤ x ≤ u

Feasible Output: A maximum flow x∗, the maximum flow value
∑

{i:(i,t)∈A} x
∗
(i,t), and an s-t cut

δ(S, S) such that s ∈ S, t ∈ S and
∑

{(i,j)∈A:i∈S,j∈S} u(i,j) =
∑

{i:(i,t)∈A} x
∗
(i,t).

Infeasible
Output:

The maximum-flow problem, as we have described it, is never infeasible since the

flow x = 0 satisfies the bound constraints and the balance constraints for all prob-
lem instances.

Required Problem Input

GIDEN solvers derived from the MaxFlow problem base class will request the following information:

“Capacity” — edge array of integer data type;
provides edge capacities ue for each e ∈ A.

s — source node

t — sink node

The “Capacity” data field is requested in the solver input dialog. Source node s and sink node t are
requested at the start of solver execution.

3.3 Maximum Flow Problem 45

3.3.1 Generic Augmenting Path Algorithm

algorithm generic augmenting path;a

{
x := 0;
while (Gx contains an s-t dipath) do
{

identify an s-t dipath P in Gx;
calculate δ := min{(i,j)∈P} u

x
(i,j);

augment δ units of flow along P and update Gx;
}

} (END of ‘generic augmenting path’)

aSee Chapter 6, Section 4 of [1] for a description of the generic augmenting path
algorithm as presented here.

Solver-Specific Input:

The user is asked to specify a search method for finding an augmenting path. The current
implementation supports only two choices: “breath-first search” (BFS) and “depth-first search
(DFS). This input is requested through the network window status line.

Solver Animation Sets:

Trial (red): Nodes and edges being considered for inclusion in an augmenting path of G.

Acquired (green): Nodes and edges in the current augmenting path of G.

Discarded (yellow): Edges that are encountered during the search for an augmenting path but
are disregarded because their ends have both already been “seen” during the course of the
search, or because no residual capacity is available.

Label Information:

Edge labels: Labels on the edges e ∈ A give the current flow and the remaining capacity:
(xe, ue − xe)

Node labels: Source node s is labeled “s”, and sink node t is labeled “t”; other nodes have
empty labels.

Feasible Result Information:

Reachable Nodes (orange): Used to color the set R of nodes that are reachable from s in Gx at
the end of solver execution.

Minimum Capacity Cut (black): Used to color the edges in the minimum cut δ(R,N\R) at the
end of solver execution.

The final flow value and the minimum cut capacity are displayed in the status line.

46 Solver Reference

3.3.2 Shortest Augmenting Path Algorithm

algorithm shortest augmenting path;a

{
x := 0;
obtain the exact distance labels di for each node i ∈ N;b

i := s;
while (ds < |N |) do
{

if (i has an admissible edgec) then
{

advance(i);
if (i = t) then
{

augment;
i := s;

}
}
else retreat(i);

}
} (END of ‘shortest augmenting path’)

procedure advance(i);
{

let (i, j) be an admissible edge in Ax(i);
pred(j) := i and i := j;

}

procedure retreat(i);
{

di := min{(i,j)∈Ax(i):ux
(i,j)

>0} dj + 1;

if (i 6= s) then i := pred(i);
}

procedure augment;
{

using the pred indices, identify the augmenting s-t path P;
δ := min{(i,j)∈P} u

x
(i,j);

augment δ units of flow along path P;
}

aSee Chapter 7, Section 4 of [1] for a description of the shortest augmenting path algorithm as presented
here.

bFor each node i ∈ N\{t}, di := the minimum number of edges in an i-t dipath in G.
cAn edge (i, j) in Gx is admissible if dj = di + 1 and ux

(i,j)
> 0.

3.3 Maximum Flow Problem 47

Solver-Specific Input:

There is a solver option to use “smart label updates”; this option, if selected, incorporates into
the solver an improved approach for updating distance labels as suggested on pp. 219–220 in [1].

Solver Animation Sets:

Trial (red): Nodes and edges being considered for inclusion in an augmenting s-t dipath of Gx.

Acquired (green): Nodes and edges in the current augmenting s-t dipath of Gx.

Discarded (yellow): Inadmissible edges that are encountered during the search for an augment-
ing s-t dipath. Nodes whose distance labels have changed during the current search for an
augmenting s-t dipath.

Label Information:

Edge labels: Labels on the edges e ∈ A give the current flow and the remaining capacity:
(xe, ue − xe)

Node labels: Current distance labels di for nodes i ∈ N\{t}. Sink node t is labeled “t”
(dt = 0).

Feasible Result Information:

Reachable Nodes (orange): Used to color the set R of nodes that are reachable from s in Gx at
the end of solver execution. set

Minimum Capacity Cut (black): Used to color the edges in the minimum cut δ(R,N\R) at the
end of solver execution.

The final flow value and the minimum cut capacity are displayed in the status line.

48 Solver Reference

3.3.3 Preflow-Push Algorithm

algorithm preflow-push;a

{
preprocess;
while (network contains an active nodeb) do
{

select an active node i;
push/relabel(i);

}
} (END of ‘preflow-push’)

procedure push/relabel(i);
{

if (network contains and admissible edge (i, j)c) then
{

δ := min{ei, u
x
(i,j)};

push δ units of flow from node i to node j;
}
else

replace di by min{j:(i,j)∈Ax(i),ux
(i,j)

>0} dj + 1;

}

procedure preprocess;
{

x := 0;
compute exact distance labels di;

d

x(s,j) := u(s,j) for each edge (s, j) ∈ A(s);
ds := n;

}

aSee Chapter 7, Sections 6-8 of [1] for a description of the preflow-push algorithm as presented here.
bNode i ∈ N is active if ei ≡

∑

{j:(j,i)∈A} x(j,i) >
∑

{j:(i,j)inA} x(i,j).
cAn edge (i, j) in Gx is admissible if dj = di + 1 and ux

(i,j)
> 0.

dFor each node i ∈ N\{t}, di := the minimum number of edges in an i-t dipath in G.

Solver-Specific Input: (none)

Solver Animation Sets:

Current (red): The selected active node i and the current admissible edge incident to i.

Active (blue): All nodes j ∈ N\{s, t} with ej > 0. (note: if advanced termination is selected,
this is all nodes with ej > 0 and dj < |N |.)

Label Information:

Edge labels: Labels on the edges e ∈ A give the current flow and the remaining capacity:
(xe, ue − xe)

Node labels: Current distance labels di for nodes i ∈ N\{t}. Sink node t is labeled “t”
(dt = 0).

Feasible Result Information:

Reachable Nodes (orange): Used to color the nodes in the set S at the end of solver execution.

Minimum Capacity Cut (black): Used to color the edges in the cut δ(S, S̄) at the end of solver
execution.

3.3 Maximum Flow Problem 49

The final flow value and the minimum cut capacity are displayed in the status line.

Implementation Notes: The solver implementation follows the “highest-label” rule described in [1] for se-
lecting an active node i. An advanced termination option is available; this option relabels some nodes i ∈ N

with positive excess ei by setting di := |N | until an optimal preflow is found, then the preflow is resolved as
described in [1].

50 Solver Reference

3.4 Minimum Cost Flow Problem

Given a directed network N = (G, c, u, b), the minimum-cost flow problem is to find a feasible flow
of minimal cost, where the cost of a flow x is calculated as

∑

e∈A cexe. We say a flow x is feasible
for the minimum-cost flow problem if it satisfies the bound constraints, 0 ≤ x ≤ u, and the balance
constraints:

∑

{j:(i,j)∈A}

x(i,j) −
∑

{j:(j,i)∈A}

x(j,i) = bi for each node i ∈ N.

A node i ∈ N is called a supply node if bi > 0, a demand node if bi < 0, or a transshipment node
if bi = 0. For a supply node i, we say that the amount of supply available at i is bi units. For a
demand node i, we say that the amount of demand at i is |bi| units.

Input: A network N = (G, c, u, b), where c ∈ ZA, u ∈ ZA+ and b = ZN .1

Formulation:

min
∑

e∈A cexe
s.t.

∑

{j:(i,j)∈A} x(i,j) −
∑

{j:(j,i)∈A} x(j,i) = bi for each node i ∈ N

0 ≤ x ≤ u

Feasible Output: A minimum cost flow x∗, the flow cost
∑

e∈A cex
∗
e , and node potentials π∗ ∈ RN

such that c(i,j) − π∗i + π∗j ≥ 0 for all edges (i, j) ∈ A.

Infeasible
Output:

A partition of the nodes into two sets, S and D, such that the capacity of the cut
δ(S,D) is less than the net supply of nodes in S:

∑

{(i,j)∈A:i∈S,j∈D}

u(i,j) <
∑

i∈S

bi

Assumptions:
∑

i∈N bi = 0

Required Problem Input

GIDEN solvers derived from the MinCostFlow problem base class will request the following infor-
mation:

“Capacity” — edge array of integer data type;
provides edge capacities ue for each e ∈ A.

“Cost” — edge array of integer data type;
provides edge costs ce for each e ∈ A.

“Supply” — node array of integer data type;
provides node supply bi for each i ∈ N .

The “Capacity,” “Cost,” and “Supply” data fields are requested in the solver input dialog.

1Note that the solvers currently included in GIDEN require finite and integer-valued costs as well capacities. For
the minimum cost flow problem in general, the cost vector c does not need to be integer-valued (i.e., c ∈ R

A), and
the capacity vector u may include unbounded values (i.e., ue =∞).

3.4 Minimum Cost Flow Problem 51

3.4.1 Capacity Scaling

algorithm capacity scaling;
{

x := 0 and π := 0;
δ := 2blog2Uc;
while (δ ≥ 1) do
{

for (every arc (i,j) in Gx) do
{

if (rij ≥ δ and cπij < 0) then
send rij units of flow along (i,j), updating xij, ei, and ej;

}

E := {i ∈ N |ei ≥ δ};
D := {i ∈ N |ei ≤ −δ};
while (E 6= ∅) do
{

select a node k ∈ E;
if (a δ-capacity path exists in Gx(δ) from k to any node in D) then
{

let d(l) be the shortest path distance in Gx(δ) from
k to a node l ∈ D with respect to reduced costs cπ;a

let P denote a shortest path from node k to node l in Gx(δ);
for (each node i that was permanently labeledb) do

πi := πi − di + dl;
augment δ units of flow along the path P;
update x, E, D, and Gx(δ);

}
else remove k from E;

}
δ := δ/2;

}
} (END of ‘capacity scaling’)

aDijkstra’s algorithm used to find shortest path distances.
bNodes are permanently labeled while computing node distances di.

Solver-Specific Input: (none)

Solver Animation Sets:

Path (blue): Nodes and edges in path from an excess node k to a demand node l.

Label Information:

Edge labels: Labels on the edges e ∈ A give the current flow, remaining capacity, and
cost: (xe, ue − xe, ce)

Node labels: Labels on the nodes i ∈ N give the supply and current potential: bi, πi

Feasible Result Information:

Flow between Bounds (orange): Used to color the edges e ∈ A such that 0 < xe < ue in
the final flow.

Flow at Capacity (red): Used to color the edges that are at capacity in the final flow.
These are the edges e ∈ A such that xe = ue.

52 Solver Reference

The edges not included in either of these final sets have zero flow in the final solution
(i.e., xe = 0); these unused edges are drawn in the default color.

An optimal minimum cost flow is displayed, and the total cost of the flow is reported in
the network window status line. The potentials reported in the node labels can be used
as a certificate of optimality.

Infeasible Result Information:

Excess Reachable Nodes (orange): Used to color a set S of nodes with positive net supply.
The net supply of this set of nodes exceeds the capacity of the implied cut δ(S,D),
where D ≡ N\S.

Infeasibility Cut (black): Used to color the edges in the cut δ(S,D).

When a problem instance is reported as infeasible, node labels display the supply available
at each node.

Implementation Notes: During the δ-phase preprocessing step, edges with sufficient residual capacity
and appropriate reduced costs will be temporarily colored red when executing the solver in step mode
or pseudocode mode.

3.4 Minimum Cost Flow Problem 53

3.4.2 Cycle Canceling

algorithm cycle canceling;
{

establish a feasible flow x, if one exists;
while (the residual network contains a negative-cost cycle) do
{

identify a negative-cost cycle;
calculate the residual capacity of the cycle;
augment flow along the cycle;

}
} (END of ‘cycle canceling’)

Solver-Specific Input: (none)

Solver Animation Sets:

Cycle (blue): Used to color nodes and edges in the current negative-cost cycle. When
this animation set is being traced, the cycle will be drawn, and the cycle capacity
and cost will be reported in the network window status line. Selecting the Trace

button again will then highlight the bottleneck arc in the cycle (using the color red),
and report the new flow cost in the status line.

Label Information:

Edge labels: Labels on the edges e ∈ A give the current flow, remaining capacity, and
cost: (xe, ue − xe, ce)

Node labels: Labels on the nodes i ∈ N give the supply: bi

Feasible Result Information:

Flow between Bounds (orange): Used to color the edges e ∈ A such that 0 < xe < ue in
the final flow.

Flow at Capacity (red): Used to color the edges that are at capacity in the final flow.
These are the edges e ∈ A such that xe = ue.

The edges not included in either of these final sets have zero flow in the final solution
(i.e., xe = 0); these unused edges are drawn in the default color.

An optimal minimum cost flow is displayed, and the total cost of the flow is reported in
the network window status line.

Infeasible Result Information:

Excess Reachable Nodes (orange): Used to color a set S of nodes with positive net supply.
The net supply of this set of nodes exceeds the capacity of the implied cut δ(S,D),
where D ≡ N\S.

Infeasibility Cut (black): Used to color the edges in the cut δ(S,D).

When a problem instance is reported as infeasible, node labels display the supply available
at each node.

54 Solver Reference

3.4.3 Out-of-Kilter

algorithm out-of-kilter;
{

π := 0;
establish a feasible flow x, if one exists;
while (the residual network contains an out-of-kilter edgea) do
{

select an out-of-kilter edge (p,q) in Gx;
define the length of each edge (i,j) in Gx as max{0, cπij};
let d be the shortest path distances for q to all other nodes

in Gx\{(q, p)}, and let P be the shortest path from q to p;
if (dp ==∞) then

update πi := πi − cπpq for all nodes reachable from q;
else

update πi := πi − di for all nodes reachable from q;
if (cπpq < 0) then
{

let W be the cycle obtained by adding edge (p, q) to path P;
calculate the residual capacity of cycle W;
augment flow along W;
update x, Gx, and the reduced costs;

}
}

} (END of ‘out-of-kilter’)

aAn edge e is said to be “out-of-kilter” if it does not satisfy the complementary slackness conditions. These
conditions require that cπe ≥ 0 when xe = 0, cπe = 0 when xe ∈ (0, ue), and cπe ≤ 0 when xe = ue.

Solver-Specific Input: (none)

Solver Animation Sets:

Kilter Edge (red): Currently selected out-of-kilter edge, (p, q).

Cycle (blue): The cycle W obtained by adding the out-of-kilter edge (p, q) to the path
P .

Label Information:

Edge labels: Labels on the edges e ∈ A give the current flow, remaining capacity, and
cost: (xe, ue − xe, ce)

Node labels: Labels on the nodes i ∈ N give the supply and current potential: bi, πi

Feasible Result Information:

Flow between Bounds (orange): Used to color the edges e ∈ A such that 0 < xe < ue in
the final flow.

Flow at Capacity (red): Used to color the edges that are at capacity in the final flow.
These are the edges e ∈ A such that xe = ue.

3.4 Minimum Cost Flow Problem 55

The edges not included in either of these final sets have zero flow in the final solution
(i.e., xe = 0); these unused edges are drawn in the default color.

An optimal minimum cost flow is displayed, and the total cost of the flow is reported in
the network window status line. The potentials reported in the node labels can be used
as a certificate of optimality.

Infeasible Result Information:

Excess Reachable Nodes (orange): Used to color a set S of nodes with positive net supply.
The net supply of this set of nodes exceeds the capacity of the implied cut δ(S,D),
where D ≡ N\S.

Infeasibility Cut (black): Used to color the edges in the cut δ(S,D).

When a problem instance is reported as infeasible, node labels display the supply available
at each node.

56 Solver Reference

3.4.4 Network Simplex Algorithm

algorithm network simplex;
{

determine an initial network simplex tree structure T;
calculate the initial flow x and node potentials π;

while (some edge not in T violates optimality conditions) do
{

select an entering edge e that violates its optimality conditions;
determine a leaving edge that results from adding e to T;
update flow x and tree structure T;
if (entering edge 6= leaving edge) then

update tree indices and node potentials π;
}

} (END of ‘network simplex’)

Solver-Specific Input: (none)

Solver Animation Sets:

Tree (green): Used to color the nodes in the current tree T .

Entering Edge (red): Used to color the selected entering edge.

Leaving Edge (yellow): Used to color the selected leaving edge;

Label Information:

Edge labels: Labels on the edges e ∈ A give the current flow, remaining capacity, and
cost: (xe, ue − xe, ce)

Node labels: Labels on the nodes i ∈ N give the supply and current potential: bi, πi

Feasible Result Information:

Flow between Bounds (orange): Used to color the edges e ∈ A such that 0 < xe < ue in
the final flow.

Flow at Capacity (red): Used to color the edges that are at capacity in the final flow.
These are the edges e ∈ A such that xe = ue.

The edges not included in either of these final sets have zero flow in the final solution
(i.e., xe = 0); these unused edges are drawn in the default color.

An optimal minimum cost flow is displayed, and the total cost of the flow is reported in
the network window status line. The potentials reported in the node labels can be used
as a certificate of optimality.

3.4 Minimum Cost Flow Problem 57

Infeasible Result Information:

Excess Reachable Nodes (orange): Used to color a set S of nodes with positive net supply.
The net supply of this set of nodes exceeds the capacity of the implied cut δ(S,D),
where D ≡ N\S.

Infeasibility Cut (black): Used to color the edges in the cut δ(S,D).

When a problem instance is reported as infeasible, node labels display the supply available
at each node.

Implementation Notes:

1. The algorithm implementation adds an artificial root node and auxilary edges, which are not
drawn on the network window canvas. Since these nodes and edges are not drawn, it is possible
that the tree structure T will appear to have too few edges.

2. The tree structure maintained throughout execution is a strongly feasible tree structure. The
leaving edge is selected according to the description in [1].

58 Solver Reference

3.4.5 Successive Shortest Paths Algorithm

algorithm successive shortest path;a

{
x := 0 and π := 0;
ei := bi for each i ∈ N;
initialize the sets E := {i ∈ N : ei > 0} and D := {i ∈ N : ei < 0}
while (|E| > 0) do
{

select a node k ∈ E;
determine the shortest dipath distance dl from k to

a node l ∈ D in Gx with respect to reduced costs cx(π);b

let P denote a shortest path from node k to node l;
for each node i that was permanently labeled, πi := πi − di + dl;
δ := min{ek,−el,min{(i,j)∈P} u

x
(i,j)};

augment δ units of flow along path P;
update x, Gx, E, D, and the reduced costs c(π);

}
} (END of ‘successive shortest path’)

aSee Chapter 9, Section 7 of [1] for a description of the successive shortest path algorithm as presented here.
bFor e = (i, j) ∈ A, the reduced cost cx

(i,j)
(π) = c(i,j)−πi+πj if (i, j) ∈ Ax, and cx

(j,i)
(π) = −c(i,j)−πj +πi

if (j, i) ∈ Ax.

Solver-Specific Input: (none)

Solver Animation Sets:

Path (blue): Nodes and edges in path from an excess node k to a demand node l.

Path Bottleneck (red): Edges in the k-l path are bottleneck edges if the amount of flow
sent from k to l has been limited by the residual capacity of these edges.

Label Information:

Edge labels: Labels on the edges e ∈ A give the current flow, remaining capacity, and
cost: (xe, ue − xe, ce)

Node labels: Labels on the nodes i ∈ N give the supply and current potential: bi, πi

Feasible Result Information:

Flow between Bounds (orange): Used to color the edges e ∈ A such that 0 < xe < ue in
the final flow.

Flow at Capacity (red): Used to color the edges that are at capacity in the final flow.
These are the edges e ∈ A such that xe = ue.

The edges not included in either of these final sets have zero flow in the final solution
(i.e., xe = 0); these unused edges are drawn in the default color.

An optimal minimum cost flow is displayed, and the total cost of the flow is reported in
the network window status line. The potentials reported in the node labels can be used
as a certificate of optimality.

3.4 Minimum Cost Flow Problem 59

Infeasible Result Information:

Excess Reachable Nodes (orange): Used to color a set S of nodes with positive net supply.
The net supply of this set of nodes exceeds the capacity of the implied cut δ(S,D),
where D ≡ N\S.

Infeasibility Cut (black): Used to color the edges in the cut δ(S,D).

When a problem instance is reported as infeasible, node labels display the supply available
at each node.

60 Solver Reference

Chapter 4

Developing Solvers

In this chapter we give an overview of the process for developing GIDEN solvers. The first section
covers basic topics, such as how to obtain the implementor distribution, the anatomy of a solver,
and the process of linking a solver through the Solvers menu. The second section is a tutorial for
developing a solver implementation of Kruskal’s algorithm for the minimum spanning tree problem.
This section starts with a pseudocode description of the algorithm, and gradually steps through the
process of developing a functional solver. The final section of this chapter builds on the tutorial
example, and introduces a few “advanced” features that can be added to your solvers. The topics
covered in this last section include visually displaying solver result information, using a solver input
dialog, and executing solvers as subroutines.

4.1 GIDEN Solver Basics

4.1.1 The Implementor Distribution

The implementor version is distributed in a ZIP file that is downloaded from:

http://users.iems.nwu.edu/˜dilworth/giden-faq.html

The distribution contains the files needed to develop GIDEN solvers. Installation instructions are
included in the ZIP file. Note this guide is not included in the implementor version, but it can also
be downloaded from the same web site. Java tools need to be installed on the computer prior to
developing solvers.

4.1.2 Anatomy of a Solver

Every GIDEN solver is derived from the ExecBase base class, which provides the fundamental
framework for interacting with the core environment. Each solver is expected to provide four public
methods, which are used by the core environment to create and execute the solver. To describe the
basic anatomy of a GIDEN solver, we will refer to the EmptySolver class presented in Figure 4.1.

The first line of EmptySolver.java is the class declaration. This line declares that this is a public
class named “EmptySolver”, which is derived from the ExecBase base class. Note that in Java, the

62 Developing Solvers

package giden.userSOLVERS;
import giden.CORE.*;
import giden.GRDS.*;

public class EmptySolver extends ExecBase
{

EmptySolver(UserBase userinfo) {
super(userinfo);

}

public boolean Setup(Network net) {
return true;

}

public boolean Execute() {
return true;

}

public boolean Shutdown() {
return true;

}
}

Figure 4.1: Code listing for EmptySolver.java

class name determines what the filename should be (including upper and lower case). In particular,
the code for class “EmptySolver” should be saved in a file named “EmptySolver.java”.

The remainder of the code listing consists of four methods, which are required in every GIDEN
solver.1 The first method is the class constructor, which is used to create an instance of the solver.
The remaining three methods are used by the core environment to control the solver execution. Each
of these methods are described below.

Note that the EmptySolver example doesn’t actually do anything. The only value of EmptySolver
is that it demonstrates the bare minimum structure of a GIDEN solver. The constructor method is an
empty shell that executes the base class constructor; the Setup(), Execute(), and Shutdown()
methods return immediately without performing any operations. In Section 4.2 we will develop a
working example of a solver whose methods perform additional operations.

Constructor Method

The constructor method has the same name as the solver class, and takes a single parameter of
type UserBase. The UserBase object that is passed to the constructor provides several methods
for communicating with the user interface (see the html documentation in the doc folder). The
constructor method typically performs the following operations:

1. Invokes the base class constructor. (Required)

2. Saves a copy of the UserBase object for local use.

3. Initializes the solver’s animation sets.

1Some of these methods may be omitted, in which case the corresponding base class methods will be executed.

4.1 GIDEN Solver Basics 63

The first operation in the solver constructor is to invoke the base class constructor, by executing the
super() method and passing the UserBase object. This operation, which is required, registers
the UserBase object with the base class so that it can be used throughout solver execution.

In addition to invoking the base class constructor, the solver constructor may perform a variety of
solver-specific operations. Items 2 and 3 above are only examples of solver-specific operations that
may be included in the constructor method. The kind of operations that should usually be included
in the constructor are those operations that initialize solver variables or other data items that do
not change between consecutive executions of a solver.

Setup() Method

The Setup() method is executed by the core environment each time the user makes a request to
run the solver. In particular, this method is executed when the solver is selected from the network
window’s Solvers menu, and each time the user selects the Reset action button when the solver is
active. The Setup() method typically performs the following operations:

1. Saves a copy of the Network object for local use.

2. Sets the “directed state” of the Network object.

3. Creates a solver input dialog.

4. Initializes the node and edge labels.

The Setup() method is passed a single parameter of type Network (see [4]). The passed Network
instance corresponds to the network currently displayed in the window. This is the base network
that is used as input for the solver algorithm.

The return value of Setup() is a boolean that indicates whether or not the operations of the
method were performed successfully. If this method returns “false”, then the core environment will
abort solver execution and return the network window to edit mode.

Execute() Method

The Execute() method is invoked by the core environment each time the solver is run. It is
executed immediately following a successful return from the Setup() method. The Execute()
method typically performs the following operations:

1. Creates and initializes any solver-specific data structures. (E.g., node and edge arrays that
the solver maintains for transient use during solver execution.)

2. Executes the algorithm logic of the solver.

The return value of Execute() is a boolean that indicates whether or not the solver was able to
complete execution. This value is ignored in the current version of GIDEN, but it is reserved for
future use.

Shutdown() Method

The Shutdown()method is invoked by the core environment after a solver has completed execution.
It is executed immediately following the Execute() method. The Shutdown() method typically
performs the following operations:

64 Developing Solvers

1. Saves any result information from the solver.2

2. Resets any transient data values that should not carry over to subsequent solver executions.

The return value of Shutdown() is a boolean that indicates whether or not operations of the
method were performed successfully. This value is ignored in the current version of GIDEN, but it
is reserved for future use.

4.1.3 The Obligatory HelloWorld Example

The EmptySolver example in the previous section is utterly useless except for illustrating the basic
components of a GIDEN solver. In the name of tradition, we will now proceed with the customary
“hello world” example, which is only slightly more interesting. The code listing for our HelloWorld
solver is given in Figure 4.2.

package giden.userSOLVERS;
import giden.CORE.*;
import giden.GRDS.*;

public class HelloWorld extends ExecBase
{

private UserBase UI;

public HelloWorld(UserBase userinfo) {
super(userinfo);
UI = userinfo;

}

public boolean Execute() {
UI.StatusLine("Hello world!");

return true;
}

}

Figure 4.2: Code listing for HelloWorld.java

The HelloWorld solver is probably the simplest GIDEN solver possible that actually interacts with
the user. HelloWorld does not request any user input, perform any operations on the network,
create any animation sets, or display a pseudocode window. It only writes the text string “Hello
world!” in the network window status line.

There are a few notable differences between the structure of the HelloWorld and EmptySolver
solvers:

1. HelloWorld includes a private class variable named UI. This variable is used to save a local
copy of the UserBase object that is passed to the constructor method.

2. In the Execute() method, the UI variable is used to write the text string “Hello world!” in
the network window status line.

2The current GIDEN release does not provide infrastructure support for saving solver results.

4.2 An Example Solver 65

3. Observe that the Setup() and Shutdown() methods are missing from HelloWorld, even
though we said just a couple of pages ago that these methods were required in all GIDEN
solvers. (If you go back and check, you’ll notice that we included a footnote that hedged a bit
on this point.) In practice, since HelloWorld doesn’t need to perform any operations in these
two methods, you can simply omit them from the solver. The end result, is that Setup() and
Shutdown() are still executed by the core environment, but in this case the actual methods
that are executed are empty methods provided by the ExecBase base class.

The next topic in this section will describe how to link this HelloWorld solver into the GIDEN
solver toolkit.

4.1.4 Linking a Solver to GIDEN

Before a solver is accessible through GIDEN, an entry must be created in the network window Solvers

menu. The SolverMenu class is responsible for managing solvers that are not part of the GIDEN
solver toolkit. There are two methods in the SolverMenu class that must be modified in order to
link your solver through the Solvers menu: the CreateMenu() method and the CreateSolver()
method.

The following steps describe how to modify the SolverMenu class file in order to add an entry for
the HelloWorld solver:

1. Open the SolverMenu.java file for editing.

2. In the SolverMenu.java file, create a global String variable that gives the name of your
new solver. For example, after the similar line for the FeatureExample solver, add the
following text:

final String HELLO WORLD = "My Hello World Solver";

3. In the CreateMenu() method, add the following text in order to set up a problem submenu
and solver selection for the new solver:

AddProblem("My New Solvers");
AddSolver(HELLO WORLD);

4. In the CreateSolver()method, you will need to check for the selection of your HelloWorld
solver. To do this, add the following lines immediately after the similar lines that are given
for the FeatureExample solver (and before the return call):

if (name.equals(HELLO WORLD))
exec = new HelloWorld(user);

5. Save the changes that you have made to the SolverMenu.java file, then recompile GIDEN.

After you recompile, you can execute GIDEN and run your new HelloWorld solver.

4.2 An Example Solver

So you’ve made it through the trivial EmptySolver and HelloWorld examples, and now you’re
ready to tackle a more complete (and useful) solver. Well, you’ve come to the right place. In this
section, we describe a straightforward implementation of Kruskal’s algorithm for the minimum span-
ning tree problem.3 We develop the solver in several stages, starting with a pseudocode description

3The solver we develop here will differ somewhat from the solver included in the standard GIDEN distribution.

66 Developing Solvers

of the algorithm. While this tiered approach to solver development may not be ideal for your own
coding style, it is useful for understanding the different components of the solver.

4.2.1 Kruskal’s Algorithm

Consider a network N = (G, l), where G = (N,A) is a connected undirected graph and le is the
edge length for each edge e ∈ A. Given such a network N , the minimum spanning tree problem is to
find a minimal length subset of the edges A′ ⊆ A such that the graph G′ = (N,A′) is connected and
acyclic. One straightforward approach for solving the minimum spanning tree is known as Kruskal’s
algorithm. A pseudocode description of the algorithm is given below:

algorithm Kruskal (network N)
{

mark all edges in A as unexamined;
LIST := ∅;
while (|LIST| < |N | − 1 and unexamined edges exist) do
{

e := a minimal length unexamined edge;
mark edge e as examined;
if (adding e to LIST does not create a cycle)

add e to LIST;
}

} /* A′ == LIST */

4.2.2 Creating the Solver File and Linking to GIDEN

The first step in developing a GIDEN solver is to create a solver class file, and to link that file
through the Solvers menu. Name your file MyKruskal.java and include the following text:

package giden.userSOLVERS;

import giden.CORE.*;

import giden.GRDS.*;

public class MyKruskal extends ExecBase

{
MyKruskal(UserBase userinfo) {

super(userinfo);

}

public boolean Setup(Network net) {
return true;

}

public boolean Execute() {
return true;

}

public boolean Shutdown() {
return true;

}
}

4.2 An Example Solver 67

Now follow the directions in Section 4.1.4 to create an entry in the Solvers menu for your new
Kruskal solver. For example, you could add an entry for the MyKruskal solver by editing the
SolverMenu.java file as shown here (changes in black):

package giden.userSOLVERS;

import giden.CORE.*;

import giden.GRDS.*;

public class SolverMenu extends SolverMenuBase

{
final String KRUSKAL EXAMPLE="The Kruskal Example";

. . .

SolverMenu(){ . . . }

public void CreateMenu() {
. . .

AddProblem("Example Solvers");

AddSolver(KRUSKAL EXAMPLE);

}

public ExecBase CreateSolver(String name, SolverServices solvserv) {
. . .

if (name.equals(KRUSKAL EXAMPLE))

exec = new MyKruskal(user);

return exec;

}
}

These changes will result in the creation of a new submenu in the network window’s Solvers menu.
This submenu will be named Example Solvers, and it will contain an entry named The Kruskal Example

that will execute the MyKruskal solver. You may choose the name of the submenu and solver entry
to suit your personal taste, but please note that the name of the pseudocode file for the MyKruskal
solver (see § 4.2.6) must exactly match the name assigned to the solver in this submenu with ”txt”
appended (e.g., “The Kruskal Example.txt”).

Recompile after making the above changes to SolverMenu.java. The next time you execute
GIDEN, you should be able to select the new solver from the Solvers menu. At this point, nothing
will happen when you try to execute the solver, because we have not yet included any algorithm
logic in the MyKruskal class.

4.2.3 Adding the Algorithm Logic

Now that the basic solver framework is in place, the next step to update our solver is to add
the algorithmic logic. A modified version of the file MyKruskal.java is given by the listing in
Figure 4.3, where the method ExecuteMyKruskalSolver is replaced by the listing in Figure 4.4.

We now describe the changes in MyKruskal.java (shown in black type in the figures):

• We define several global variables for the solver: UI, Net, Length, LIST, and ForestLength.
The variables UI and Net are used to store local copies of the UserBase and Network in-
stances that are passed through the solver constructor and Setup() methods. The Length
array is used to hold the network information that is required as an input for the minimum
spanning tree problem. The LIST and ForestLength variables are used to store the result

68 Developing Solvers

package giden.userSOLVERS;

import giden.CORE.*;

import giden.GRDS.*;

public class MyKruskal extends ExecBase

{
private UserBase UI;

private Network Net;

private EdgeArray Length;

private LinkList LIST;

private int ForestLength;

MyKruskal(UserBase userinfo) {
super(userinfo);

UI = userinfo;

}

public boolean Setup(Network net) {
Net = net;

UI.PutDirected(false);

Length = Net.GetEdgeArray("Euclidean Length");

if (Length == null)

return false;

LIST = null;

ForestLength = 0;

return true;

}

public boolean Execute() {
ExecuteMyKruskalSolver();

return true;

}

public boolean Shutdown() {
if (LIST != null)

LIST.DeleteContents();

ForestLength = 0;

return true;

}

private void ExecuteMyKruskalSolver() { . . . }
}

Figure 4.3: Changes to MyKruskal.java to accommodate algorithm logic.

information for the solver (e.g., the edges in a minimum spanning tree, and the total length of
that tree).

• The global class variable UI is initialized in the solver constructor method. This variable is
used throughout the solver to interact with the user interface.

• In the Setup() method we perform the following operations: (1) Initialize the global class
variable Net. (2) Set a boolean value that tells GIDEN to draw the current network as an
undirected graph. (3) Initialize the Length array to use the Euclidean length data field.4 (4)

4In this example, we are “hard coding” the name of the data field to use for the solver’s Length array input. In

4.2 An Example Solver 69

private void ExecuteMyKruskalSolver() {
Edge e;

EdgeListIter eit = Net.GetEdgeListIter();

Node n;

NodeListIter nit = Net.GetNodeListIter();

PQList unexamined = new PQList();

NodeArray component = new NodeArray(Net.GetNodeIndex(),"component");

/* set each node in its own component */

int num components = 0;

for (n=nit.GetFirstNode() ; n != null ; n=nit.GetNextNode())

component.Put(n,num components++);

/* mark all edges as unexamined */

for (e=eit.GetFirstEdge() ; e != null ; e=eit.GetNextEdge())

unexamined.Insert(e, Length.GetInt(e));

LIST = new LinkList();

while (LIST.GetSize() < Net.GetNodeCount()-1 && unexamined.NotEmpty()) {
e = unexamined.GetMinEdge();

unexamined.DeleteMinEdge();

/* check to see if edge e creates a cycle */

int source component = component.GetInt(e.GetSource());

int target component = component.GetInt(e.GetTarget());

if (source component != target component) {
/* can add edge to LIST without creating a cycle */

/* reset component for target to be that of source */

for (n=nit.GetFirstNode() ; n != null ; n=nit.GetNextNode())

if (component.GetInt(n) == target component)

component.Put(n,source component);

/* decrement count of components */

num components--;

/* "acquire" edge e by adding to LIST */

LIST.AddItem(e);

ForestLength += Length.GetInt(e);

}
}

}

Figure 4.4: Method ExecuteMyKruskalSolver containing algorithm logic.

Initialize the solver’s result information to be undefined.

• The Execute() method is modified to execute the actual algorithm logic by calling a pri-
vate class method named ExecuteMyKruskalSolver. (We separate the logic from the
Execute() method for style reasons that we will not discuss here.) Figure 4.4 shows a
complete listing of the ExecuteMyKruskalSolver method.

• The Shutdown() has been modified to reset the solver’s result information. In particular,
the contents of the tree/forest LIST are removed, and the value of ForestLength is set to
zero.

Section 4.3.2 we will describe how to use an input dialog to allow the user to select the input array.

70 Developing Solvers

4.2.4 Setting the Network Labels

In order to add the algorithm logic to our solver, it was necessary to select an input array to use as
the edge lengths. Although we selected the “Euclidean Length” array in the Setup() method, we
neglected to update the edge labels to display the values associated with this array.

Figure 4.5 shows a modified version of our solver that incorporates two changes. First, a private
solver method InitializeNetworkLabels() is now included. This method updates the edge
labels to display the appropriate length values, and it sets the node labels to be empty (since we
choose not to display any node information in this solver). The second change is to execute this
new method from Setup(). Note that the new method is executed only after the Length array
has been initialized.

package giden.userSOLVERS;

import giden.CORE.*;

import giden.GRDS.*;

public class MyKruskal extends ExecBase

{
. . .

MyKruskal(UserBase userinfo) { . . . }

public boolean Setup(Network net) {
Net = net;

UI.PutDirected(false);

Length = Net.GetEdgeArray("Euclidean Length");

if (Length == null)

return false;

InitializeNetworkLabels();

LIST = null;

ForestLength = 0;

return true;

}

public boolean Execute() { . . . }

public boolean Shutdown() { . . . }

private void InitializeNetworkLabels() {
Edge e;

EdgeListIter eit = Net.GetEdgeListIter();

for (e=eit.GetFirstEdge() ; e != null ; e=eit.GetNextEdge())

UI.PutLabel(e,Length.GetInt(e));

Node n;

NodeListIter nit = Net.GetNodeListIter();

for (n=nit.GetFirstNode() ; n != null ; n=nit.GetNextNode())

UI.PutLabel(n,"");

}

private void ExecuteMyKruskalSolver() { . . . }
}

Figure 4.5: Changes to MyKruskal.java to set the network labels.

4.2 An Example Solver 71

4.2.5 Adding Animation

Although we have now implemented the logic of Kruskal’s algorithm, if we recompile and execute
the modified solver we do not have any way of observing the steps of the algorithm or the final
result. As a next step to a complete GIDEN solver, we will modify our code further to add some
basic animation.

The notion we describe here of animation is motivated by an idea that the state of an algorithm
operating on a network can be represented using a partition of the nodes and edges. Solver animation
in GIDEN is then based on putting nodes and edges into implementor-defined subsets. Each subset
in a GIDEN solver is represented by a AnimationSet object, and a distinct color is associated
with each AnimationSet.

Figure 4.6 and Figure 4.7 show changes to MyKruskal.java needed to add basic solver animation.
For our implementation of Kruskal’s algorithm we define three AnimationSet variables:

1. Current — the unexamined edge that is selected as a candidate for being added to LIST.
We associate the color “red” with this set.

2. Acquired — the set of edges that have been added to LIST, along with the set of nodes that
are adjacent to any edge in LIST. The greenish color that we associate with this set is specified
using RGB values.

3. Discarded — the set of edges that were selected as candidates for being added to LIST but
were excluded because they would have created a cycle. We associate the color “yellow” with
this set.

We now describe the changes in MyKruskal.java:

• The solver imports the Java class that is needed in order to work with colors, java.awt.Color.

• Global variables are defined for the AnimationSet objects.

• The constructor method creates the AnimationSet objects. Creating these objects through
the UI variable registers the animation sets with the core environment.

• The ExecuteMyKruskalSolver method puts nodes and edges into the appropriate ani-
mation sets, using the SingleStep(), Trace(), and Update() methods of UserBase.
The SingleStep() call is used to put a node or edge object into a particular animation
set. Then the Trace() method is executed to explicitly mark the animation set as having
changed. Finally, the Update() method is executed to signal the core environment that the
solver is at a “good” stopping point if the user is executing in either trace animation mode or
continuous animation mode (see Section 2.3.3).

72 Developing Solvers

package giden.userSOLVERS;

import giden.CORE.*;

import giden.GRDS.*;

import java.awt.Color;

public class MyKruskal extends ExecBase

{
private UserBase UI;

private Network Net;

private EdgeArray Length;

private LinkList LIST;

private int ForestLength;

private AnimationSet Current;

private AnimationSet Acquired;

private AnimationSet Discarded;

MyKruskal(UserBase userinfo) {
super(userinfo);

UI = userinfo;

Current = UI.CreateAnimationSet("Current",Color.red);

Acquired = UI.CreateAnimationSet("Acquired",new Color(48,175,48));

Discarded = UI.CreateAnimationSet("Discarded",Color.yellow);

}

public boolean Setup(Network net) { . . . }

public boolean Execute() { . . . }

public boolean Shutdown() { . . . }

private void InitializeNetworkLabels() { . . . }

private void ExecuteMyKruskalSolver() { . . . }
}

Figure 4.6: Changes to MyKruskal.java to accommodate GIDEN animation.

4.2 An Example Solver 73

private void ExecuteMyKruskalSolver() {
Edge e;

EdgeListIter eit = Net.GetEdgeListIter();

Node n;

NodeListIter nit = Net.GetNodeListIter();

PQList unexamined = new PQList();

NodeArray component = new NodeArray(Net.GetNodeIndex(),"component");

/* set each node in its own component */

int num components = 0;

for (n=nit.GetFirstNode() ; n != null ; n=nit.GetNextNode())

component.Put(n,num components++);

/* mark all edges as unexamined */

for (e=eit.GetFirstEdge() ; e != null ; e=eit.GetNextEdge())

unexamined.Insert(e, Length.GetInt(e));

LIST = new LinkList();

while (LIST.GetSize() < Net.GetNodeCount()-1 && unexamined.NotEmpty()) {
e = unexamined.GetMinEdge();

UI.SingleStep(e, Current);

UI.Trace(Current);

UI.Update();

unexamined.DeleteMinEdge();

/* check to see if edge e creates a cycle */

int source component = component.GetInt(e.GetSource());

int target component = component.GetInt(e.GetTarget());

if (source component != target component) {
/* can add edge to LIST without creating a cycle */

/* reset component for target to be that of source */

for (n=nit.GetFirstNode() ; n != null ; n=nit.GetNextNode())

if (component.GetInt(n) == target component)

component.Put(n,source component);

/* decrement count of components */

num components--;

/* "acquire" edge e by adding to LIST */

LIST.AddItem(e);

ForestLength += Length.GetInt(e);

UI.SingleStep(e, Acquired);

UI.SingleStep(e.GetSource(), Acquired);

UI.SingleStep(e.GetTarget(), Acquired);

UI.Trace(Acquired);

UI.Update();

}
else {

/* adding e would have created a cycle; "discard" edge e */

UI.SingleStep(e, Discarded);

UI.Trace(Discarded);

UI.Update();

}
}

}

Figure 4.7: Changes to ExecuteMyKruskalSolver method for GIDEN animation.

74 Developing Solvers

4.2.6 Adding Pseudocode

After adding animation to our solver, we can visually observe the progress of Kruskal’s algorithm
applied to an appropriate network. As a supplement to this visualization, we now consider adding
pseudocode for the algorithm that will show the progress of our MyKruskal solver in a textual
form.

In the current release of GIDEN, solver pseudocode is stored in an external file. This pseudocode file
is a plain ASCII text file, where each line has two items that are separated by a colon (“:”) character.
The first item on a line is that line’s token identifier. This token consists of the characters up to (but
not including) the first colon character on the line, excluding leading and trailing whitespace. The
second item on a line is the actual pseudocode text for that line. This item includes all characters
that follow the colon separator, through the end of the line. Figure 4.8 shows a pseudocode text file
for the MyKruskal solver.

start : algorithm kruskal

: {

mark edges : mark all edges as unexamined;

init LIST : LIST := emptyset;

main loop : while (|LIST| < |N|-1 and unexamined edges exist) do

: {

select edge : e := a minimal length unexamined edge;

mark edge : mark edge e as examined;

cycle check : if (adding e to LIST does not create a cycle) then

acquire edge : add e to LIST;

cycle else : else

discard edge : discard e;

: }

end : } (END of ‘kruskal’)

Figure 4.8: Pseudocode file for MyKruskal solver.

The pseudocode for a user-developed solver must be stored in the “userPC” subdirectory of the
GIDEN installation directory. The name of the pseudocode file must be the the String name
of the solver that you defined when linking the solver through the SolverMenu class with “.txt”
appended (see Step 2 in Section 4.1.4). For example, if the changes to the SolverMenu.java
file were made as presented in Section 4.2.2, then the name of the pseudocode file should be “The
Kruskal Example.txt”.

Changes to the ExecuteMyKruskalSolver method of the solver are shown in Figure 4.9. The
method ShowPseudoCodeText() is used to specify the line of pseudocode that is displayed dur-
ing solver execution. If a user is executing in pseudocode animation mode (see Section 2.3.3), then
the solver will suspend execution each time a call to ShowPseudoCodeText() is made. Note
that many of the pseudocode lines are displayed independently of any visual animation. When
the pseudocode should instead be synchronized with changes in the animation sets, the call to
ShowPseudoCodeText() should follow the appropriate calls to SingleStep() and should pre-
cede the subsequent call to Update().

4.2 An Example Solver 75

private void ExecuteMyKruskalSolver() {
UI.ShowPseudoCodeText("start");

. . .

/* mark all edges as unexamined */

for (e=eit.GetFirstEdge() ; e != null ; e=eit.GetNextEdge())

unexamined.Insert(e, Length.GetInt(e));

UI.ShowPseudoCodeText("mark edges");

LIST = new LinkList();

UI.ShowPseudoCodeText("init LIST");

while (LIST.GetSize() < Net.GetNodeCount()-1 && unexamined.NotEmpty()) {
UI.ShowPseudoCodeText("main loop");

e = unexamined.GetMinEdge();

UI.SingleStep(e, Current);

UI.ShowPseudoCodeText("select edge");

UI.Trace(Current);

UI.Update();

unexamined.DeleteMinEdge();

UI.ShowPseudoCodeText("mark edge");

/* check to see if edge e creates a cycle */

int source component = component.GetInt(e.GetSource());

int target component = component.GetInt(e.GetTarget());

UI.ShowPseudoCodeText("cycle check");

if (source component != target component) {

. . .

/* "acquire" edge e by adding to LIST */

LIST.AddItem(e);

ForestLength += Length.GetInt(e);

UI.SingleStep(e, Acquired);

UI.SingleStep(e.GetSource(), Acquired);

UI.SingleStep(e.GetTarget(), Acquired);

UI.ShowPseudoCodeText("acquire edge");

UI.Trace(Acquired);

UI.Update();

}
else {

UI.ShowPseudoCodeText("cycle else");

/* adding e would have created a cycle; "discard" edge e */

UI.SingleStep(e, Discarded);

UI.ShowPseudoCodeText("discard edge");

UI.Trace(Discarded);

UI.Update();

}
}
UI.ShowPseudoCodeText("main loop");

UI.ShowPseudoCodeText("end");

}

Figure 4.9: Changes to ExecuteMyKruskalSolver to accommodate GIDEN pseudocode.

76 Developing Solvers

4.2.7 Using the Status Line

With the algorithm logic, animation, and pseudocode in place, our solver is essentially complete.
One oversight is that we might want to give additional messages to the user during solver execution
— to report the length of our spanning tree, for example. The top line of the GIDEN drawing
canvas, known as the status line, is reserved for writing such messages to the user5.

In Figure 4.10 we make a few final changes to the ExecuteMyKruskalSolver method of our
solver. These changes use the status line to report additional information about the progress
of our solver. The methods used to change the status line information are StatusLine() and
ClearStatusLine(). The StatusLine() method takes a Java String object as an argument,
and displays the string text in the status line. As the name implies, the ClearStatusLine()
method clears any text that is currently displayed in the status line.

Information that is presented in the status line is usually intended to supplement either the vi-
sual information presented through the solver’s animation sets, or the textual information pre-
sented through the solver’s pseudocode window. For this reason, calls to StatusLine() and
ClearStatusLine() must be placed carefully in the solver code. In particular, if the status line
information should be displayed when the solver is running in pseudocode animation mode, then the
call to StatusLine() should appear before the related call to ShowPseudoCodeText(). Simi-
larly, if the status line information should be synchronized with trace animation mode or continuous
animation mode, then the call to StatusLine() should appear before the call to Update(). After
setting the status line information, a subsequent call to ClearStatusLine() should be made to
manually clear the message; this is necessary to avoid leaving any outdated information in the status
line.

In our example solver, at the end of the ExecuteMyKruskalSolver method, we use the status
line to report the aggregate length of edges in LIST. If the edges in LIST form a spanning tree of
the underlying graph, then we report a message indicating the length of that tree in the status line.
If the edges do not form a spanning tree, then they form a “minimal spanning forest” of the graph,
and we report the total length of that forest. Note that this final status line message is not cleared
with a call to ClearStatusLine(). In this case, we want the message to persist until the user
either exits the solver, or re-starts solver execution using the Reset action button. In both of these
cases, the core environment will automatically clear the status line.

5The status line can also be used to get user input on decisions, as demonstrated in SimpleExample.java.

4.2 An Example Solver 77

private void ExecuteMyKruskalSolver() {
UI.StatusLine("My Kruskal Solver begins...");

UI.ShowPseudoCodeText("start");

UI.ClearStatusLine();

. . .

while (LIST.GetSize() < Net.GetNodeCount()-1 && unexamined.NotEmpty()) {

. . .

if (source component != target component) {

. . .

/* "acquire" edge e by adding to LIST */

LIST.AddItem(e);

ForestLength += Length.GetInt(e);

UI.SingleStep(e, Acquired);

UI.SingleStep(e.GetSource(), Acquired);

UI.SingleStep(e.GetTarget(), Acquired);

UI.StatusLine("Adding edge does not create a cycle; edge \"acquired\"");
UI.ShowPseudoCodeText("acquire edge");

UI.Trace(Acquired);

UI.Update();

UI.ClearStatusLine();

}
else {

UI.ShowPseudoCodeText("cycle else");

/* adding e would have created a cycle; "discard" edge e */

UI.SingleStep(e, Discarded);

UI.StatusLine("Adding edge would create a cycle; edge \"discarded\"");
UI.ShowPseudoCodeText("discard edge");

UI.Trace(Discarded);

UI.Update();

UI.ClearStatusLine();

}
}
UI.ShowPseudoCodeText("main loop");

if (num components > 1)

UI.StatusLine("Forest length = "+ForestLength+" units.");

else

UI.StatusLine("Minimum spanning tree length = "+ForestLength+" units.");

UI.ShowPseudoCodeText("end");

}

Figure 4.10: Changes to ExecuteMyKruskalSolver to use the status line.

78 Developing Solvers

4.3 Advanced Topics

The previous section presents an example solver for the minimum spanning tree problem. The final
example solver includes the main components of any functioning GIDEN solver, including support
for pseudocode and algorithm animation. In this section, we describe additional features that can
be incorporated into your solvers. In particular, we discuss the following topics:

• visually displaying result information for a solver

• using a solver input dialog

• executing solvers as subroutines

• modifying networks within solvers

Where appropriate, we show how the MyKruskal solver may be modified to incorporate a given
feature.

4.3.1 Visually Displaying Results

One useful feature of GIDEN is the ability to visually display the progress of a solver during execu-
tion. To this point, however, we have not described how a solver can visually represent any result
information.6 To do this, we will introduce the notion of “final sets” and “color sets.”

Final Sets

Final sets are similar to animation sets in several respects. First, final sets maintain a “color”
property that is used when drawing items that are associated with the set. Secondly, final sets
maintain a text “label” that describe the set. Finally, node and edge items are placed into final sets
using the SingleStep() method of the UserBase class.

There are also several differences between final sets and animation sets. Unlike animation sets, final
sets are not represented in the network window until a solver has completed execution. At this point,
any animation-set buttons will be replaced with “swatches” that represent the final sets. Each of
these swatches displays the color and label that are associated with the final set.7 Also, since these
final set swatches are only displayed after a solver has completed execution, it is possible to change
the text in a final set’s label at any point during solver execution. This is useful if some final set
may be used to represent different result conditions. (An example of this is included in the modified
MyKruskal solver code.)

Color Sets

Color sets in GIDEN are similar to final sets and animation sets in that they maintain a a “color”
property that is used when drawing member items. The main difference that distinguishes color sets
is that they do not maintain a “label” property, nor are they ever represented with a “button” or
“swatch” in the network window. Instead, color sets are an internal mechanism for setting the color
property of nodes and edges.

6So far, the status line is the only mechanism that we have described for reporting solver result information. For
example, in the MyKruskal solver, the status line is used to report the final tree length.

7The difference between these final set “swatches” and the animation-set “buttons” is that the swatches are not
selectable by the user; instead they only serve as a key to the displayed result information.

4.3 Advanced Topics 79

In practice, the use of color sets should be limited to setting the color of nodes and edges to some
default value. This is useful, for example, to reset the color of an item after an operation has been
performed, or to visually contrast items that are currently in an animation or final set with those
items that are not in the set.

Updating the MyKruskal Solver

A modified version of MyKruskal.java, shown in Figure 4.11, illustrates the use of color sets and
final sets to visually display solver results. In the case of the MyKruskal solver, the final result is
a spanning tree or forest. The changes are described below:

• We have added a final set variable named Forest. This variable is initialized in the constructor
to use the color “blue” and to display the label “Minimum Spanning Tree.”

• We have added a color set variable named Default. This variable is initialized in the con-
structor to use the color “light gray.”

• At the end of the ExecuteMyKruskalSolver()method, we have added a call to MoveAll().
The purpose of this call is to associate all node and edge items with the Default color set.

• Following the call to MoveAll(), the LIST is traversed. Each edge in the LIST, along with
its endpoint nodes, are then placed into the Forest final set.

• If the input network has exactly one component, then the result of MyKruskal is a minimum
spanning tree on the network. Otherwise, the solver returns a spanning forest that is composed
of minimum spanning trees for each of the input network’s components. In the first case, the
initial label assigned to the Final set is correct, and remains unchanged. In the latter case,
the label associated with the Forest final set is updated with a call to PutLabel() to reflect
the solver result.

80 Developing Solvers

package giden.userSOLVERS;

import giden.CORE.*;

import giden.GRDS.*;

import java.awt.Color;

public class MyKruskal extends ExecBase

{
. . .

private ColorSet Default;

private FinalSet Forest;

MyKruskal(UserBase userinfo) {
. . .

Default = UI.CreateColorSet(Color.lightGray);

Forest = UI.CreateFinalSet("Minimum Spanning Tree", Color.blue);

}

public boolean Setup(Network net) { . . . }

public boolean Execute() { . . . }

public boolean Shutdown() { . . . }

private void InitializeNetworkLabels() { . . . }

private void ExecuteMyKruskalSolver() {
. . .

while (LIST.GetSize() < Net.GetNodeCount()-1 && unexamined.NotEmpty()) {
. . .

}
UI.ShowPseudoCodeText("main loop");

UI.MoveAll(Default);

ListEntry lit;

for (lit=LIST.GetFirstEntry(); lit != null ;lit=LIST.GetNextEntry(lit)) {
e = (Edge) lit.GetItem();

UI.SingleStep(e, Forest);

UI.SingleStep(e.GetSource(), Forest);

UI.SingleStep(e.GetTarget(), Forest);

}
if (num components > 1) {

Forest.PutLabel("Forest of Component-Wise Spanning Trees");

UI.StatusLine("Forest length = "+ForestLength+" units.");

}
else

UI.StatusLine("Minimum spanning tree length = "+ForestLength+" units.");

UI.ShowPseudoCodeText("end");

}
}

Figure 4.11: Changes to MyKruskal.java to display results.

4.3 Advanced Topics 81

4.3.2 Using a Solver Input Dialog

Most GIDEN solvers will require node and edge data fields (arrays) as input. For example, minimum
spanning tree solvers require that edge lengths be specified as part of the problem (see § 3.1).
Although it is possible to “hard code” the names of data fields that are needed as input, this is an
inflexible approach that can lead to unexpected results (e.g., if the named arrays don’t exist in the
input network). A preferable approach is to allow the user to specify which node and edge arrays
should be used as input. The mechanism in GIDEN that supports this is the solver input dialog.

A solver input dialog works as follows: For each required input array the solver assigns a logical
name for the input and specifies a data type. The solver then creates the input dialog through the
user interface (via the UserBase object). The solver input dialog window appears as described in
§ 2.3.2, and the user selects the data fields that should be associated with each input. The solver
can then retrieve the input arrays using the assigned logical names.

Input Dialog Data Types

In the current version of GIDEN, only the following node and edge data types are supported for
solver input dialogs:8

SolverInputItem.EDGE ARRAY — an edge array of unspecified data type. Member elements
should be treated as Java Object items for retrieval from the selected EdgeArray. For
example, a member element would be retrieved with the GetObject() method. (Note: This
is the input type that should be used to access edge arrays of “text” type.)

SolverInputItem.NODE ARRAY — a node array of unspecified data type. Member elements
must be treated as Java Object items for retrieval from the selected NodeArray. For ex-
ample, a member element would be retrieved with the GetObject() method. (Note: This is
the input type that should be used to access node arrays of “text” type.)

SolverInputItem.INTEGER EDGE ARRAY — an edge array of integer data type. Member el-
ements are of Java type Integer, and can be either be retrieved as int values using the
GetInt()method, or they can be retrieved as Java Integer objects using the GetObject()
method.

SolverInputItem.INTEGER NODE ARRAY — a node array of integer data type. Member ele-
ments are of Java type Integer, and can be either be retrieved as int values using the
GetInt()method, or they can be retrieved as Java Integer objects using the GetObject()
method.

Validating Input Data

Aside from being a convenient way for the user to specify the input arrays for a solver, the input
dialog also provides the solver with a built-in mechanism for checking the validity of the specified
input.

The input validation mechanism works as follows: When the user selects the Accept button in the
input dialog, the dialog executes a solver method named ValidateInput().9 This method can
retrieve the specified input arrays and perform any desired checks (e.g., the Dijkstra solver checks

8Currently, the solver input dialog can only be used to specify input arrays. If nodes or edges are required as input
to a solver, these items must be requested through the UserBase object (see the html documentation).

9If this method is not included in your solver code, an empty method from the ExecBase base class will be
executed.

82 Developing Solvers

that the specified “Length” array does not contain any negative values). If the inputs pass the
validity checks, then the ValidateInput() should return “true”; otherwise the method should
return “false,” after optionally displaying an appropriate error message. The dialog window will not
“accept” the specified input unless the ValidateInput()method returns “true.” The input dialog
will still return if the Cancel button is selected, in which case the solver should exit immediately.

Updating the MyKruskal Solver

A modified version of MyKruskal.java, shown in Figure 4.12, demonstrates how a solver might
use an input dialog. The changes are described below:

• Before we begin the class declaration, we import the classes giden.GUI.GidenSolverInput
and giden.GUI.SolverInputItem; these classes provide the input dialog window object
as well as the input dialog data type descriptors.

• A global class variable input has been added. This variable is used to manage the solver’s
input data.

• The input variable is initialized in the solver’s constructor method. After initialization, a
single input item is registered. The requested input is an edge array of integer data type, with
the assigned logical name “Length.”

• A call to CreateSolverInputDialog() is added to the Setup() method. There are four
required arguments: (1) the name of the solver, (2) the this reference to the solver, (3) the
network object of interest, and (4) the variable that contains the input specifications.

• After the CreateSolverInputDialog() method returns, the solver checks to see if the
input object has been validated (i.e., if the dialog was exited by selecting the Accept button,
rather than the Cancel button). If the input has not been validated, then Setup() exits with
a return value of “false,” which will cause the network window to return to edit mode.

• The user-specified “Length” input array is retrieved from the input object.

• A private ValidateInput() method has been added. This method would normally be used
by the solver to validate the user-specified inputs for any special requirements (for example, if
the solver required that all “length” values be non-zero).

Finally, we note that the new segment of code in the Setup() method is conditionally executed if
UI.NullBase is “false.” This check is required when the solver may be executed as a subroutine
of another solver. We will defer any explanation of this for now, though the topic will eventually be
addressed in § 4.3.3.

4.3 Advanced Topics 83

package giden.userSOLVERS;

import giden.CORE.*;

import giden.GRDS.*;

import java.awt.Color;

import giden.GUI.GidenSolverInput;

import giden.GUI.SolverInputItem;

public class MyKruskal extends ExecBase

{
private UserBase UI;

private Network Net;

private GidenSolverInput input;

private EdgeArray Length;

. . .

MyKruskal(UserBase userinfo) {

. . .

input = new GidenSolverInput();

input.addItem(SolverInputItem.INTEGER EDGE ARRAY,"Length");

}

public boolean Setup(Network net) {
Net = net;

UI.PutDirected(false);

if (!UI.NullBase) {
UI.CreateSolverInputDialog("My Kruskal Solver", this, Net, input);

if (!input.isValidated())

return false;

/* extract input info */

Length = (EdgeArray) input.getItemData("Length");

}
if (Length == null)

Length = Net.GetEdgeArray("Euclidean Length");

if (Length == null)

return false;

InitializeNetworkLabels();

LIST = null;

ForestLength = 0;

return true;

}

public boolean ValidateInput() {return true;}

public boolean Execute() { . . . }

public boolean Shutdown() { . . . }

private void InitializeNetworkLabels() { . . . }

private void ExecuteMyKruskalSolver() { . . . }
}

Figure 4.12: Changes to MyKruskal.java to include a solver input dialog.

84 Developing Solvers

4.3.3 Executing Solvers as Subroutines

One of the advanced features of GIDEN is the ability for solvers to communicate with each other.
In particular, a GIDEN solver can execute other solvers in order to obtain a solution to some
subproblem. For example, a minimum-cost-flow solver might call a maximum-flow solver to obtain
an initial feasible flow (see § 3.4 in this guide and Section 9.6 in [1]).

...

4.3.4 Modifying Networks within Solvers

As mentioned earlier, the solver is passed a network object when its Setup() method is executed.
Throughout the course of the solver execution, it may be desirable to modify this network in some
way. An example might be to add temporary nodes and edges to a minimum-cost-flow problem
network in order to obtain an initial solution for “phase-1” of the network simplex algorithm. The
current version of GIDEN provides several mechanisms for making temporary modifications to a
given network object.

...

Bibliography

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier North-Holland, 1976.

[3] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander Schrijver.
Combinatorial Optimization. John Wiley & Sons, Inc., New York, 1998.

[4] David Dilworth, Collette Coullard, and Jonathan H. Owen. Graph & related data structures
user’s guide. Technical Report TR-96.09, Department of Industrial Engineering and Management
Sciences, Northwestern University, 1996.

[5] Christopher V. Jones. Visualization and Optimization. Operations Research / Computer Science
Interfaces Series. Kluwer Academic Publishers, Boston, 1996.

[6] Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Saunders College Pub-
lishing, Fort Worth, 1976.

[7] Bertrand Meyer. Object Oriented Software Construction. Prentice Hall, second edition, 1996.

[8] Stefan Näher and Christian Uhrig. The LEDA User Manual, Version R-3.3, 1996. Available via
anonymous ftp from ftp.mpi-sb.mpg.de in /pub/LEDA.

[9] Robret Endre Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NFS Re-
gional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathemat-
ics, Philadelphia, Pennsylvania, 1983.

